Автор работы: Пользователь скрыл имя, 05 Октября 2009 в 13:44, Не определен
на конкретном примере
Табл. 4.9.2. Доходность и риск рассматриваемых ценных бумаг
Доходность | Риск | |
Акции 1 | 1,47% | 14,18% |
Акции 2 | 5,99% | 20,72% |
Акции 3 | 1,78% | 15,85% |
Акции 4 | 0,84% | 5,76% |
Акции 5 | 3,30% | 15,45% |
Акции 6 | 5,34% | 16,93% |
При численном моделировании были заданы требуемая доходность портфеля 4 %, допустимый риск портфеля 8 %. Пользуясь встроенной функцией табличного процессора Excel Solver “поиск решения”, были решены прямая и обратная задачи по оптимизации фондового портфеля. После обработки данных были рассчитаны оптимальные структуры портфеля из рассматриваемых ценных бумаг, обеспечивающие максимально возможную доходность при заданном уровне риска (прямая задача) или минимально возможный риск при заданной доходности (обратная задача). Полученные результаты представлены в табл. 4.9.4.
Табл. 4.9.3. Коэффициенты корреляции между доходностью ценных бумаг
Акции 1 | 0,06 | 0,01 | -0,30 | 0,06 | 0,41 |
Акции 2 | 0,15 | 0,08 | 0,50 | -0,37 | |
Акции 3 | 0,08 | 0,01 | 0,14 | ||
Акции 4 | -0,03 | -0,11 | |||
Акции 5 | -0,40 | ||||
Акции 6 |
Табл. 4.9.4. Структуры оптимального портфеля по модели Марковица
|
Основной недостаток модели Марковица — ожидаемая доходность ценных бумаг принимается равной средней доходности по данным прошлых периодов. Поэтому модель Марковица рационально использовать при стабильном состоянии фондового рынка, когда желательно сформировать портфель из ценных бумаг различного характера, имеющих более или менее продолжительный срок жизни на фондовом рынке.
Модель
Шарпа рассматривает
Основные допущения модели Шарпа:
— в качестве доходности ценной бумаги принимается математическое ожидание доходности;
— существует некая безрисковая ставка доходности , т. е. доходность некой ценной бумаги, риск которой всегда минимален по сравнению с другими ценными бумагами;
— взаимосвязь отклонений доходности ценной бумаги от безрисковой ставки доходности (далее: отклонение доходности ценной бумаги) с отклонениями доходности рынка в целом от безрисковой ставки доходности (далее: отклонение доходности рынка) описывается функцией линейной регрессии;
— под риском ценной бумаги понимается степень зависимости изменений доходности ценной бумаги от изменений доходности рынка в целом;
— считается, что данные прошлых периодов, используемые при расчете доходности и риска, отражают в полной мере будущие значения доходности.
По модели Шарпа отклонения доходности ценной бумаги связываются с отклонениями доходности рынка функцией линейной регрессии вида:
где — отклонение доходности ценной бумаги от безрисковой;
— отклонение доходности рынка от безрисковой;
— коэффициенты регрессии.
Исходя из этой формулы, можно по прогнозируемой доходности рынка ценных бумаг в целом рассчитать доходность любой ценной бумаги, его составляющей:
где , — коэффициенты регрессии, характеризующие данную ценную бумагу.
Теоретически, если рынок ценных бумаг находится в равновесии, то коэффициент будет равен нулю. Но так как на практике рынок всегда разбалансирован, то показывает избыточную доходность данной ценной бумаги (положительную или отрицательную), т.е. насколько данная ценная бумага переоценивается или недооценивается инвесторами.
Коэффициент называют -риском, т. к. он характеризует степень зависимости отклонений доходности ценной бумаги от отклонений доходности рынка в целом. Основное преимущество модели Шарпа — математически обоснована взаимозависимость доходности и риска: чем больше - риск, тем выше доходность ценной бумаги.
Кроме того, модель Шарпа имеет особенность: существует опасность, что оцениваемое отклонение доходности ценной бумаги не будет принадлежать построенной линии регрессии. Этот риск называют остаточным риском. Остаточный риск характеризует степень разброса значений отклонений доходности ценной бумаги относительно линии регрессии. Остаточный риск определяют как среднее квадратическое отклонение эмпирических точек доходности ценной бумаги от линии регрессии. Остаточный риск i - ой ценной бумаги обозначают .
Другими словами показатель риска вложения средств в данную ценную бумагу определяется - риском и остаточным риском .
В соответствии с моделью Шарпа доходность портфеля ценных бумаг – это среднее взвешенное значение показателей доходности ценных бумаг, его составляющих, с учетом - риска. Доходность портфеля определяется по формуле:
где - безрисковая доходность;
- ожидаемая доходность рынка в целом;
Риск портфеля ценных бумаг может быть найден с помощью оценки среднего квадратичного отклонения функции и определяется по формуле:
где - среднее квадратическое отклонение доходности рынка в целом, т. е. показатель риска рынка в целом;
- - риск и остаточный риск i - ой ценной бумаги;
С использованием модели Шарпа для расчета характеристик портфеля прямая задача приобретает вид:
Обратная задача выглядит аналогичным образом:
При
практическом применении модели Шарпа
для оптимизации фондового
1). Обычно в качестве безрисковой ставки доходности принимают доходность государственных ценных бумаг, например, облигаций внутреннего государственного займа.
2).
В качестве доходности рынка
ценных бумаг в целом в период
t используются экспертные
где — доходность рынка ценных бумаг в период t;
— доходность i - ой ценной бумаги за период t.
3) - риск ценной бумаги рассчитывается по формуле:
где — -риск i - ой ценной бумаги;
— безрисковая доходность в период t;
T - рассматриваемое количество периодов времени.
5) Остаточный риск ценной бумаги имеет следующий вид:
6) Риск рынка ценных бумаг в целом определяется по формуле:
Проведем численное моделирование оптимизации фондового портфеля, используя модель Шарпа для расчета характеристик портфеля. Для расчета оптимального портфеля была разработана специальная программа, работающая в среде электронного процессора Excel.
Исходные данные для расчета (доходность ценных бумаг) остаются без изменений (см. табл. 4.9.1). Кроме того, модель Шарпа предусматривает использование доходности рынка в целом и безрисковой доходности. Доходность рынка в целом принималась на основании экспертных оценок, ввиду отсутствия данных из внешних источников. В качестве безрисковой доходности принималась приведенная к недельному сроку доходность трехмесячных государственных краткосрочных облигаций. Данные о доходности рынка в целом и о безрисковой доходности представлены в табл. 4.9.5.
Период | Доходность рынка в целом | Безрисковая доходность |
1 | 5% | 0,75% |
2 | 2,5% | 0,75% |
3 | 10% | 0,80% |
4 | 2% | 0,80% |
5 | 7% | 0,80% |
6 | 4% | 0,90% |
7 | 1,5% | 0,90% |
8 | 2% | 0,90% |
9 | 3% | 0,90% |
10 | 3,5% | 0,85% |
11 | 2,5% | 0,85% |
12 | 5% | 0,85% |
13 | 1,5% | 0,85% |
14 | 2% | 0,85% |
15 | 1% | 0,85% |
Информация о работе Оценка финансового положения предприятия