Автор работы: Пользователь скрыл имя, 05 Октября 2009 в 18:09, Не определен
Современные базовые учебники по сопротивлению материалов, теории упругости, пластичности 13, 5, 7 изложены во внушительных объемах и в основном ориентированы на подробном изложении теории. Это обстоятельство усложняет процесс самостоятельного изучения предмета и послужило побудительной причиной подготовки настоящего издания.
В книге в доступной, но достаточно строгой форме изложены основные разделы классического курса сопротивления материалов, теории упругости и пластичности, которые сопровождаются подробными примерами расчетов, что несомненно должно облегчить процесс самостоятельного освоения предмета.
t (r)= . (4.11)
Величина называется полярным моментом сопротивления поперечного сечения бруса в форме сплошного круга радиусом R. Определяется эта величина из следующих соображений:
(4.12)
Если же в брусе имеется внутренняя центральная полость радиусом r = , то для кольца
, (4.13)
где с = .
4.2. Кручение
бруса с некруглым
поперечным сечением
Определение напряжений в брусе с некруглым поперечным сечением представляет собой сложную задачу, которая не может быть решена методами сопротивления материалов. Причина заключается в том, что для некруглого поперечного сечения упрощающая гипотеза плоских сечений, оказывается неприемлимой. В данном случае поперечные сечения существенно искривляются, в результате чего заметно меняется картина распределения напряжений.
Таким образом, при определении углов сдвига, в данном случае, необходимо учитывать не только взаимный поворот сечений, но и деформации сечений в своей плоскости, связанная с искривлением сечений.
Задача резко усложняется тем, что для некруглого сечения, напряжения должны определяться как функции уже не одного независимого переменного r, а двух - x и y.
Отметим
некоторые особенности законов распределения
напряжений в поперечных сечениях некруглой
формы. Если поперечное сечение имеет
внешние углы, то в них касательные напряжения
должны обращаться в нуль. Если наружная
поверхность бруса при кручении свободна,
то касательные напряжения в поперечном
сечении, направленные по нормали к контуру
также будут равны нулю.
Рис. 4.3
На рис. 4.3 показана, полученная методом теории упругости, эпюра касательных напряжений для бруса прямоугольного сечения. В углах, как видно, напряжения равны нулю, а наибольшие их значения возникают по серединам больших сторон:
в точке А tA = tmax = , (4.14)
где WК = b b3 - аналог полярного момента сопротивления поперечного сечения прямоугольного бруса;
в точке В tB = h tmax , (4.15)
здесь необходимо учесть, что b - малая сторона прямоугольника.
Значения угла закручивания определяется по формуле:
, (4.16)
где IK = a b4 - аналог полярного момента инерции поперечного сечения бруса.
Коэффициенты a, b и h зависят от отношения сторон m = h/b, и их значения приведены в табл. 3.
Таблица 3
m | 1 | 1,5 | 2,0 | 3,0 | 6,0 | 10 |
a | 0,141 | 0,294 | 0,457 | 0,790 | 1,789 | 3,123 |
b | 0,208 | 0,346 | 0,493 | 0,801 | 1,789 | 3,123 |
h | 1,000 | 0,859 | 0,795 | 0,753 | 0,743 | 0,742 |
Геометрические характеристики наиболее представительных форм сечений обобщены в табл. 4.
4.3. Пример расчета (задача № 4)
Стальной валик переменного сечения, испытывающего кручение, закручивается крутящими моментами, действующими в двух крайних и двух пролетных сечениях. Расчетная схема валика, ее геометрические размеры, величины и точки приложения внешних крутящих моментов указаны на рис. 4.4, а.
Требуется:
1. Построить эпюру крутящих моментов;
2. Найти допускаемую величину момента М;
3. Построить эпюры касательных напряжений по сечениям вала, отметив на сечениях опасные точки;
4. Построить эпюру углов закручивания;
Модуль упругости при сдвиге материала вала G = 8Ч107 кН/м2. Расчетное сопротивление материала вала срезу RC = 105 кН/м2.
Решение
откуда .
Согласно расчетной схемы (рис. 4.5, б) для участка II (0,5 м Ј Ј z Ј 1,0 м):
откуда .
Согласно расчетной схемы (рис. 4.5, в) для участка III (1,0 м Ј Ј z Ј 1,8 м):
откуда .
По полученным данным строим эпюру крутящих моментов (рис. 4.4, б).
2. Найти допускаемую величину момента М. Допускаемая величина момента МP определяется из условия прочности:
Рис. 4.4
Сначала определим моменты сопротивления сечения валика для каждого участка.
I участок (трубчатое сечение) согласно (4.13):
где ;
м3.
II участок (круглое сечение):
Рис. 4.5
м3.
III участок (прямоугольное сечение):
где b - коэффициент, зависящий от отношения сторон прямоугольного сечения h/b (h > b). В данном случае , тогда
м3.
Подсчитаем теперь напряжения по участкам в зависимости от момента М:
.
Из сравнения результатов видно, что наиболее напряженным является участок II, поэтому допускаемая величина момента [M] определяется из зависимости:
откуда
кНЧм.
4. Построить эпюры касательных напряжений по сечениям вала, отметив на сечениях опасные точки. Касательные напряжения в точках поперечного сечения валика определяются по формулам:
для круглого сечения при , t ;
для трубчатого сечения при , t ;
для прямоугольного сечения (в середине большей стороны) и t1 = g tmax (в середине меньшей стороны).
Подсчитаем моменты инерции сечений валика относительно центра их кручения.
Участок I (трубчатое сечение):
м4.
Участок II (круглое сечение):
м4.
Участок III (прямоугольное сечение):
м4,
где a = 0,243 при h/b = 1/33.
Определим значения напряжений в характерных точках сечений.
Участок I (0 Ј z Ј 0,5 м):
при кН/м2 = 77,5 МПа;
при кН/м2 =97,0МПа.
Участок II ( 0,5 м Ј z Ј 1,5 м):
при
при кН/м2 = 100,0 Мпа.
Участок III (1,0 м Ј z Ј 1,8 м): в середине большей стороны
кН/м2 = 86,8 МПа,
в середине меньшей стороны
t3 = g tmax = 0,906Ч86,7 = 78,
где g = 0,906 при h/b = 1,33.
По полученным данным строятся эпюры напряжений, приведенные на рис. 4.6.
4. Построить эпюру углов закручивания. Угол закручивания на i-ом участке вала в соответствии с (4.10) определяется:
,
где - угол закручивания на правом конце (i-1)-го участка (для первого участка - начальный угол закручивания вала); li - координата начала i-го участка.
Рис. 4.6
Так как, в данном случае в пределах каждого из трех участков крутящие моменты и жесткости на кручение GIr постоянны, то эпюры углов закручивания на каждом из участков будут линейны. В связи с этим, достаточно подсчитать их значения лишь на границах участков. Приняв, что левый конец вала защемлен от поворота, т.е. j (0) = 0, получим:
рад;