Автор работы: Пользователь скрыл имя, 05 Октября 2009 в 18:09, Не определен
Современные базовые учебники по сопротивлению материалов, теории упругости, пластичности 13, 5, 7 изложены во внушительных объемах и в основном ориентированы на подробном изложении теории. Это обстоятельство усложняет процесс самостоятельного изучения предмета и послужило побудительной причиной подготовки настоящего издания.
В книге в доступной, но достаточно строгой форме изложены основные разделы классического курса сопротивления материалов, теории упругости и пластичности, которые сопровождаются подробными примерами расчетов, что несомненно должно облегчить процесс самостоятельного освоения предмета.
Рис. 3.1 Рис. 3.2
(3.3)
Величины а и b можно подобрать (причем единственным образом) так, чтобы выполнялись следующие равенства:
bЧF = Sx ; aЧF
тогда статические моменты .
Ось, относительно которой статический момент равен нулю, называется центральной. Точка С (xC , yC) пересечения центральных осей называется центром тяжести сечения в системе координат (x, y) и определяется из (3.4):
. (3.5)
Далее предположим, что брус имеет составное сечение (рис. 3.3) с общей площадью F. Обозначим через Fk (k = 1, 2, 3,..., n) площадь k-ой области, принадлежащей к составному сечению бруса. Тогда выражение (3.1) можно преобразовать в следующем виде:
, (3.6)
где - статические моменты k-той области относительно осей x и y. Следовательно, статический момент составного сечения равен сумме статических моментов составляющих областей.
3.2. Моменты инерции сечения
Рис. 3.3
В дополнение к статическим моментам в системе координат x0y (рис. 3.1)рассмотрим три интегральных выражения:
(3.7)
Первые два интегральных выражения называются осевыми моментами инерции относительно осей x и y, а третье - центробежным моментом инерции сечения относительно осей x, y.
Для сечений, состоящих из n-числа областей (рис. 3.3), формулы (3.7) по аналогии с (3.6) будут иметь вид:
Рассмотрим, как изменяются моменты инерции сечения при параллельном переносе координатных осей x и y (см. рис. 3.2). Преобразуя формулы (3.7) с учетом выражения (3.2), получим :
(3.8)
Если предположить, что оси x1 и y1 (см. рис. 3.2) являются центральными, тогда и выражения (3.8) упрощаются и принимают вид:
(3.9)
Рис. 3.4
Определим осевые моменты инерции прямоугольника относительно осей x и y , проходящих через его центр тяжести (рис. 3.4). В качестве элементарной площадки dF возьмем полоску шириной b и высотой dy (рис. 3.4). Тогда будем иметь:
Аналогичным
образом можно установить, что
Для систем, рассматриваемых в полярной системе координат (рис. 3.5, а), вводится также полярный момент инерции:
где r - радиус-вектор точки тела в заданной полярной системе координат.
Рис. 3.5
Вычислим полярный момент инерции круга радиуса R. На рис. 3.5, a показана элементарная площадка, очерченная двумя радиусами и двумя концентрическими поверхностями, площадью
dF = r dr dj .
Интегрирование по площади заменим двойным интегрированием:
Hайдем зависимость между полярным и осевыми моментами инерции для круга. Из геометрии видно (рис. 3.5, б), что
r2 = x2 + y2,
следовательно,
Так как оси x и y для круга равнозначны, то Ix = Iy = .
Полярный момент инерции кольца может быть найден как разность моментов инерции двух кругов: наружного (радиусом R) и внутреннего (радиусом r):
3.3. Главные оси и главные моменты инерции
Рассмотрим, как изменяются моменты инерции плоского сечения при повороте осей координат из положения x и y к положению u и v. Из рис. 3.5, б легко установить, что
u = y sin a + x cos a; v =
Из выражений:
с учетом (3.10) после несложных преобразований получим:
(3.11)
Складывая первые два уравнения, получим:
Iu + Iv = Ix + Iy
где ; Ir - полярный момент инерции сечения, величина которого, как видно, не зависит от угла поворота координатных осей.
Дифференцируя в (3.11) выражение Iu по a и приравнивая его нулю, находим значение a = a0 , при котором функция Iu принимает экстремальное значение:
. (3.13)
С учетом (3.12) можно утверждать, что при a = a0 один из осевых моментов Iu или Iv будет наибольшим, а другой наименьшим. Одновременно при a = a0 Iuv обращается в нуль, что легко установить из третьей формулы (3.11).
Декартовы оси координат, относительно которых осевые моменты инерции принимают экстремальные значения, называются главными осями инерции. Осевые моменты инерции относительно главных осей называются главными и определяются из (3.11) с учетом (3.13) и имеют вид:
. (3.14)
В заключение введем понятие радиуса инерции сечения относительно координатных осей x и y - ix и iy , соответственно, которые определяются по формулам:
. (3.15)
3.4. Пример расчета (задача № 3)
Для сечения, составленного из швеллера №20 а, равнобокого уголка (80ґ80ґ8)Ч10-9 м3 и полосы (180ґ10)Ч10-6 м2 (рис. 3.6) требуется:
1. Найти общую площадь сечения;
2. Определить центр тяжести составного сечения;
3. Определить осевые и центробежный моменты инерции сечения относительно осей, проходящих через его центр тяжести;
4. Найти положение главных центральных осей инерции;
5. Определить величины главных центральных моментов инерции сечения и проверить правильность их вычисления;
6. Вычислить величины главных радиусов инерции.
Рис. 3.6
Решение
Из сортамента выписываем все необходимые геометрические характеристики для профилей, входящих в составное сечение. Швеллер № 20 а (ГОСТ 8240-72): hшв = 0,2 м, bшв = 0,08 м, Fшв = 25,2Ч10-4м2, = 1670Ч10-8м4, = 139Ч10-8м4, = 0,0228 м.
Уголок (80ґ80ґ8)Ч10-9 м3 (ГОСТ 8509-72): bуг = 0,08 м, Fуг = = 12,3Ч10-4 м2, = 73,4Ч10-8 м4, = 116Ч10-8 м4, =30,3Ч10-8 м4, = 0,0227 м.
Полоса bПЧdП = 18Ч1Ч10-4 м2,
FП = bПЧdП = 18Ч1Ч10-4 м2 = 18
м4, = 486Ч10-8 м4.
1. Определение общей площади составного сечения. Общая площадь составного сечения определяется по формуле:
F = Fшв + Fуг + FП, F = (
2. Определить центр тяжести составного сечения. В качестве вспомогательных осей для определения положения центра тяжести примем горизонтальную и вертикальную оси xшв и yшв , проходящие через центр тяжести швеллера. Статические моменты площади всего сечения относительно этих осей будут равны: