Автор работы: Пользователь скрыл имя, 05 Октября 2009 в 18:09, Не определен
Современные базовые учебники по сопротивлению материалов, теории упругости, пластичности 13, 5, 7 изложены во внушительных объемах и в основном ориентированы на подробном изложении теории. Это обстоятельство усложняет процесс самостоятельного изучения предмета и послужило побудительной причиной подготовки настоящего издания.
В книге в доступной, но достаточно строгой форме изложены основные разделы классического курса сопротивления материалов, теории упругости и пластичности, которые сопровождаются подробными примерами расчетов, что несомненно должно облегчить процесс самостоятельного освоения предмета.
где Ix - минимальный момент инерции сечения.
Для определения выражения изгибающего момента Mx (z), действующего в поперечном сечении стержня, расположенном на расстоянии z от начала системы координат, применяя метод сечений к системе, изображенной на рис. 7.2 и рассматривая равновесие отсеченной части системы, расположенной левее от заданного сечения, получим:
. (7.3)
При положительном прогибе в выбранной системе координат знак “минус” означает, что момент является отрицательным
Введем следующее обозначение:
. (7.4)
Тогда уравнение (7.2) преобразуется к виду:
. (7.5)
Решение (7.5) записывается в виде:
. (7.6)
Постоянные С1 и С2 определяются из граничных условий задачи:
y (0) = 0; y (l) = 0.
Из первого условия вытекает, что С2 = 0, а из второго получается, что либо С1 = 0 (что нам неинтересно, т.к. в этом случае y (z) є 0), либо
sin kl = 0. (7.7)
Из (7.7) следует, что kl = pn, где n - произвольное целое число. Учитывая (7.4), получаем:
. (7.8)
Это означает, что для того, чтобы центрально сжатый стержень принял криволинейную форму, необходимо, чтобы сжимающая сила была равна какому-либо значению из множества Рn по (7.8). Наименьшее из этих значений называется критической силой РKP и будет иметь место при n = 1:
РKP = . (7.9)
Эта сила носит название первой критической эйлеровой силы.
Следовательно, согласно (7.6) при Р = РKP выражение прогибов можно записать в следующем виде:
. (7.10)
Из (7.10) видно, что прогибаться стержень будет по синусоиде. Графики функций прогибов y (z) при различных n изображены на рис. 7.3.
Рис. 7.3
Из (7.9) видно, что критическая с точки зрения устойчивости сила зависит от жесткости стержня и его длины, но никак не зависит от прочностных свойств материала стержня, т.е. два стержня одинаковой длины с идентичными граничными условиями их закрепления, изготовленных из различных материалов, но имеющих одинаковую изгибную жесткость, теряют устойчивость при одном и том же значении сжимающей силы. В этом заключается значительная разница между проверкой прочности стержня на сжатие и растяжение и проверкой на устойчивость.
При изменении условий закрепления концов стержня необходимо решение дифференциального уравнения его изгиба, но уже в виде:
. (7.11)
Анализ этих решений говорит о том, что все они могут быть представлены в следующем виде:
. (7.12)
где m - коэффициент приведения
длины. Он показывает, во сколько раз следует
изменить длину шарнирно опертого стержня,
чтобы критическая сила для него равнялась
бы критической силе стержня длиной l
в рассматриваемых условиях закрепления.
На рис. 7.4 показано несколько видов закрепления
стержня и указаны соответствующие значения
коэффициента m.
7.2. Границы
применимости решения Эйлера.
Формула Ясинского
Как показали опыты, решение Эйлера подтверждалось не во всех случаях. Причина состоит в том, что формула Эйлера была получена в предположении, что при любой нагрузке стержень работает в пределах упругих деформаций по закону Гука. Следовательно, его нельзя применять в тех ситуациях, когда напряжения превосходят предел пропорциональности. В связи с этим найдем границы применимости решения Эйлера:
Рис. 7.4
, (7.13)
где - радиус инерции сечения. Если стержень имеет одинаковые опорные закрепления в двух взаимно перпендикулярных плоскостях инерции, то при определении значения критической силы и критического напряжения, необходимо брать наименьшее значение момента инерции и, соответственно, радиуса инерции поперечного сечения.
Введем понятие гибкости стержня:
Тогда (7.13) принимает вид:
. (7.14)
Из (7.14) следует, что напряжение sКР возрастает по мере уменьшения гибкости стержня. Заметим, что стержень, имеющий неодинаковые опорные закрепления в главных плоскостях и, следовательно, неодинаковые приведенные длины, теряет устойчивость в той главной плоскости, в которой гибкость стержня имеет наибольшее значение.
Формула Эйлера неприемлема, если напряжения sКР > sП, где sП - предел пропорциональности. Приравнивая (7.14) к пределу пропорциональности, получим предельное значение гибкости:
. (7.15)
Если l > lПРЕД , то формулу Эйлера можно применять. В противном случае ею пользоваться нельзя. Для стали Ст.3 lПРЕД = 100.
В ситуациях, когда напряжения превышают предел пропорциональности, получение теоретического решения осложняется, т.к. зависимость между напряжениями и деформациями становится нелинейной. В связи с этим, в этих случаях пользуются эмпирическими зависимостями. В частности, Ф.С. Ясинский предложил следующую формулу для критических по устойчивости напряжений:
, (7.16)
где a, b - постоянные, зависящие от материала, так для стали Ст.3 a = 3,1Ч105 кН/м2 , b = 11,4Ч102 кН/м2.
При
гибкостях стержня, находящихся в диапазоне
0< l< 40ё50, стержень
настолько “короток”, что его разрушение
происходит по схеме сжатия, следовательно,
критические напряжения можно приравнять
в этом случае к пределу пропорциональности.
Обобщая вышесказанное, зависимость критических
напряжений sКР
от гибкости стержня l можно представить, как
это сделано на рис. 7.5.
Рис. 7.5
7.3. Расчет сжатых стержней на устойчивость
Как правило, основная проблема при расчете сжатых стержней состоит в том, чтобы сжимающие напряжения s не превышали бы критических значений по устойчивости sКР , т.е.
. (7.17)
При продольном изгибе центрально сжатый стержень теряет несущую способность, когда напряжения в его поперечных сечениях достигают критических значений. Поэтому необходимо ввести в расчет коэффициент запаса устойчивости n по отношению к критическим напряжениям, с помощью которого и определяется допускаемое напряжение при расчете на устойчивость:
При расчете же стержней на растяжение применяют условие s < R, где R - расчетное сопротивление на растяжение.
Для унификации расчетов на растяжение и сжатие введем соотношение правых частей двух последних неравенств:
, (7.18)
откуда . И тогда (7.17) можно записать так: s < jR.
Величина j носит название коэффициента уменьшения расчетного сопротивления при расчете на сжатие и является функцией от гибкости стержня l (табл. 5).
Таким образом, окончательно формула для расчета стержней на устойчивость принимает следующий вид:
. (7.19)
Несмотря на простоту выражения (7.19) расчет сжатых стержней производится, как правило, в несколько этапов. Это связано с тем, что величина j зависит от формы и размеров сечения, поэтому не может быть назначена заранее. В связи с этим, подбор сечения осуществляют итеративно, постепенно приближаясь к тому, чтобы разница между напряжением сжатия s и расчетным сопротивлением на растяжение R не превышала бы 3-5%.
Таблица 5
l | Cт 2-4 | Ст 5 | Чугун | Дерево | l | Ст 2-4 | Ст 5 | Чугун | Дерево |
0 | 1.00 | 1.00 | 1.00 | 1.00 | 110 | 0.52 | 0.43 | - | 0.25 |
10 | 0.99 | 0.98 | 0.97 | 0.99 | 120 | 0.45 | 0.36 | - | 0.22 |
20 | 0.96 | 0.95 | 0.91 | 0.97 | 130 | 0.40 | 0.33 | - | 0.18 |
30 | 0.94 | 0.92 | 0.81 | 0.93 | 140 | 0.36 | 0.29 | - | 0.16 |
40 | 0.92 | 0.89 | 0.69 | 0.87 | 150 | 0.32 | 0.26 | - | 0.14 |
50 | 0.89 | 0.86 | 0.57 | 0.80 | 160 | 0.29 | 0.24 | - | 0.12 |
60 | 0.86 | 0.82 | 0.44 | 0.71 | 170 | 0.26 | 0.21 | - | 0.11 |
70 | 0.81 | 0.76 | 0.34 | 0.60 | 180 | 0.23 | 0.19 | - | 0.10 |
80 | 0.75 | 0.70 | 0.26 | 0.48 | 190 | 0.21 | 0.17 | - | 0.09 |
90 | 0.69 | 0.62 | 0.20 | 0.38 | 200 | 0.19 | 0.16 | - | 0.08 |
100 | 0.60 | 0.51 | 0.16 | 0.31 |