Автор работы: Пользователь скрыл имя, 05 Октября 2009 в 18:09, Не определен
Современные базовые учебники по сопротивлению материалов, теории упругости, пластичности 13, 5, 7 изложены во внушительных объемах и в основном ориентированы на подробном изложении теории. Это обстоятельство усложняет процесс самостоятельного изучения предмета и послужило побудительной причиной подготовки настоящего издания.
В книге в доступной, но достаточно строгой форме изложены основные разделы классического курса сопротивления материалов, теории упругости и пластичности, которые сопровождаются подробными примерами расчетов, что несомненно должно облегчить процесс самостоятельного освоения предмета.
Координаты центра тяжести вычисляем по формулам:
3. Определить осевые и центробежный моменты инерции сечения относительно осей, проходящих через его центр тяжести. Для определения указанных моментов инерции составного сечения воспользуемся формулами, выражающими зависимость между моментами инерции относительно параллельных осей:
(3.16)
(3.17)
(3.18)
В этих формулах расстояние между осями, проходящими через центр тяжести составного сечения, и осями, проходящими через центры тяжести каждой составной части фигуры, а и b (рис. 3.6), в рассматриваемом случае будут равны:
Подставив числовые значения величин в формулы (3.16) и (3.17), получим:
= [1670 + 25,2(-1,7)2 + 73,4 +
= [139 + 25,2(1,42)2
+ 73,4 + 12,3(-3,13)2 + 486 +
При вычислении центробежного момента инерции составного сечения следует иметь в виду, что и равны 0, так как швеллер и полоса имеют оси симметрии, а
где a - угол между осью x и главной осью x0 уголка. Этот угол может быть положительным или отрицательным. В нашем примере a = +45°, поэтому:
Далее, подставив числовые значения в формулу (3.18), получим величину центробежного момента инерции составного сечения:
= [0 + 25,2 Ч (-1,7) Ч 1,42 +
+ 18 Ч 8,8 Ч 0,14] Ч10-8
4. Найти положение главных центральных осей инерции. Угол наклона главных осей инерции, проходящих через центр тяжести составного сечения, к центральным осям инерции xC и yC определим по формуле:
Так как угол a получился отрицательным, то для отыскания положения главной оси максимального момента инерции u следует ось x0, осевой момент инерции относительно которой имеет наибольшее значение, повернуть на угол a по ходу часовой стрелки. Вторая ось минимального момента инерции v будет перпендикулярна оси u.
5. Определить величины главных центральных моментов инерции сечения и проверить правильность их вычисления. Величины главных центральных моментов инерции составного сечения вычисляем по формуле:
Для контроля правильности вычисления величины моментов инерции составного сечения производим проверки.
1-ая проверка: Imax + Imin = = const;
Imax + Imin = (4344,55 + 830,
2-ая проверка: Imax > > > 0;
4344,55 Ч10-8 > 4305,4Ч10-8 > 870,1Ч10
Проверки удовлетворяются, что говорит о правильности вычисления моментов инерции составного сечения.
6. Вычислить величины главных радиусов инерции. Величины главных радиусов инерции вычисляем по известным формулам:
4. КРУЧЕНИЕ
4.1. Кручение
бруса с круглым поперечным
сечением
Здесь под кручением понимается такой вид нагружения, при котором в поперечных сечениях бруса возникает только крутящий момент. Прочие силовые факторы, т.е. Nz , Qx , Qy , Mx , My равны нулю.
Для крутящего момента, независимо от формы поперечного сечения бруса, принято следующее правило знаков. Если наблюдатель смотрит на поперечное сечение со стороны внешней нормали и видит момент Mz направленным по часовой стрелке, то момент считается положительным. При противоположном направлении моменту приписывается отрицательный знак.
При расчете бруса на кручение (вала) требуется решить две основные задачи. Во-первых, необходимо определить напряжения, возникающие в брусе, и, во-вторых, надо найти угловые перемещения сечений бруса в зависимости от величин внешних моментов.
Наиболее просто можно получить решение для вала с круглым поперечным сечением (рис. 4.1 а). Механизм деформирования бруса с круглым поперечным сечением можно представить в виде. Предполагая, что каждое поперечное сечение бруса в результате действия внешних моментов поворачивается в своей плоскости на некоторый угол как жесткое целое. Данное предположение, заложенное в основу теории кручения, носит название гипотезы плоских сечений.
Рис. 4.1
Для построения эпюры крутящих моментов Mz применим традиционный метод сечений - на расстоянии z от начала координат рассечем брус на две части и правую отбросим (рис. 4.1, б). Для оставшейся части бруса, изображенной на рис. 4.1, б, составляя уравнение равенства нулю суммы крутящих моментов SMz = 0, получим:
Mz = M. (4.1)
Поскольку сечение было выбрано произвольно, то можно сделать вывод, что уравнение (4.1) верно для любого сечения вала -крутящий момент Mz в данном случае постоянен по всей длине бруса.
Далее двумя поперечными сечениями, как это показано на рис. 4.1, а, из состава бруса выделим элемент длиной dz, а из него свою очередь двумя цилиндрическими поверхностями с радиусами r и r + dr выделим элементарное кольцо, показанное на рис. 4.1, в. В результате кручения правое торцевое сечение кольца повернется на угол dj. При этом образующая цилиндра АВ повернется на угол g и займет положение АВ ў. Дуга BВ ў равна с одной стороны, r dj, а с другой стороны - g dz. Следовательно,
. (4.2)
Если разрезать образовавшуюся фигуру по образующей и развернуть (рис. 4.1, г), то можно видеть, что угол g представляет собой не что иное, как угол сдвига данной цилиндрической поверхности под действием касательных напряжений t, вызванных действием крутящего момента. Обозначая
, (4.3)
где Q - относительный угол закручивания. Этот угол представляет собой угол взаимного поворота двух сечений, отнесенный к расстоянию между ними. Величина Q аналогична относительному удлинению при простом растяжении или сжатии стержня.
Из совместного рассмотрения (4.2) и (4.3) и после некоторых преобразований, получим:
g = r Q. (4.4)
Подставляя выражение (4.4) в выражение закона Гука для сдвига (2.23), в данном случае выражение касательных напряжений принимает следующий вид:
t = G Q r, (4.5)
где t - касательные напряжения в поперечном сечении бруса. Парные им напряжения возникают в продольных плоскостях - в осевых сечениях. Величину крутящего момента Mz можно определить через t с помощью следующих рассуждений. Момент относительно оси z от действия касательных напряжений t на элементарной площадке dF равен (рис. 4.2):
dM = t r dF.
Рис. 4.2
Проинтегрировав это выражение по площади поперечного сечения вала, получим:
. (4.6)
Из совместного рассмотрения (4.5) и (4.6) получим:
. (4.7)
Откуда
. (4.8)
Величина G Ir называется жесткостью бруса при кручении.
Из (4.8), с учетом (4.3), интегрируя полученное выражение по параметру z, получим:
. (4.9)
Если крутящий момент Mz и жесткость G Ir по длине бруса постоянны, то из (4.9) получим:
, (4.10)
где j (0) - угол закручивания сечения в начале системы отсчета.
Для определения выражения напряжений, возвращаясь к формуле (4.5) и исключая из него q, согласно (4.8), получим: