Автор работы: Пользователь скрыл имя, 05 Октября 2009 в 18:09, Не определен
Современные базовые учебники по сопротивлению материалов, теории упругости, пластичности 13, 5, 7 изложены во внушительных объемах и в основном ориентированы на подробном изложении теории. Это обстоятельство усложняет процесс самостоятельного изучения предмета и послужило побудительной причиной подготовки настоящего издания.
В книге в доступной, но достаточно строгой форме изложены основные разделы классического курса сопротивления материалов, теории упругости и пластичности, которые сопровождаются подробными примерами расчетов, что несомненно должно облегчить процесс самостоятельного освоения предмета.
Составляющая Nz называется нормальной, или продольной силой в сечении. Силы Qx и Qy называются поперечными усилиями. Момент Mz называется крутящим моментом, а моменты Mx и My -изгибающими моментами относительно осей x и y, соответственно.
При известных внешних силах все шесть внутренних силовых
факторов в сечении определяются из шести уравнений равновесия,
которые могут быть составлены для отсеченной части.
Пусть R*, M* - результирующая сила и результирующий момент действующие на отсеченной части тела. Если тело при действии полной системы внешних сил находится в равновесном состоянии, то условия равновесия отсеченной части тела имеет вид:
(1.3)
Последние два векторные уравнения равновесия дают шесть скалярных уравнений в проекциях на декартовых осях координат:
(1.4)
которые в общем случае составляют замкнутую систему алгебраических уравнений относительно шести неизвестных внутренних усилий: Qx, Qy, Nz, Mx, My, Mz.
Следовательно, если полная система внешних сил известна, то по методу сечений, всегда можно определить все внутренние усилия действующих в произвольно взятом сечении тела. Данное положение является основополагающим обстоятельством в механике твердого деформируемого тела.
В
общем случае в сечении могут иметь место
все шесть силовых факторов. Однако достаточно
часто на практике встречаются случаи,
когда некоторые внутренние усилия отсутствуют - такие
виды нагружения бруса получили специальные
названия (табл. 1).
Рис. 1.3
Сопротивления, при которых в поперечном сечении бруса действует одно внутреннее усилие, условно называются простыми. При одновременном действии в сечении бруса двух и более усилий сопротивление бруса называется сложным.
В
заключение заметим, что при выполнении
практических расчетов, для наглядности,
как правило, определяются графики функций
внутренних силовых факторов относительно
координатной оси, направленной вдоль
продольной оси стержня. Графики изменения
внутренних усилий вдоль продольной оси
стержня называются эпюрами.
Таблица 1
Простейшие случаи сопротивления
Вид напряженного состояния | Nz | Qx | Qy | Mz | Mx | My |
Растяжение/сжатие | + | 0 | 0 | 0 | 0 | 0 |
Кручение | 0 | 0 | 0 | + | 0 | 0 |
Чистый изгиб относительно оси х | 0 | 0 | 0 | 0 | + | 0 |
Чистый изгиб относительно оси у | 0 | 0 | 0 | 0 | 0 | + |
Поперечный изгиб относительно оси х | 0 | 0 | + | 0 | + | 0 |
Поперечный изгиб относительно оси у | 0 | + | 0 | 0 | 0 | + |
Примечание: + означает наличие усилия, 0 - его отсутствие.
1.4. Напряжения
В окрестности произвольной точки К, принадлежащей сечению А некоторого нагруженного тела, выделим элементарную площадку DF, в пределах которой действует внутреннее усилие D (рис. 1.4, а). Векторная величина
(1.5)
называется полным напряжением в точке К. Проекция вектора полного напряжения на нормаль к данной площадке обозначается через s и называется нормальным напряжением.
Рис. 1.4
Проекции вектора на перпендикулярные оси в плоскости площадки (рис. 1.4, б) называются касательными напряжениями по направлению соответствующих осей и обозначаются tґ и tґґ. Если через ту же самую точку К провести другую площадку, то, в общем случае будем иметь другое полное напряжение. Совокупность напряжений для множества площадок, проходящих через данную точку, образует напряженное состояние в этой точке.
1.5. Перемещения и деформации
Под действием внешних сил твердые тела изменяют свою геометрическую форму, а точки тела неодинаково перемещаются в пространстве. Вектор , имеющий свое начало в точке А недеформированного состояния, а конец в т. деформированного состояния, называется вектором полного перемещения т. А (рис. 1.5, а). Его проекции на оси xyz называются осевыми перемещениями и обозначаются u, v и w, соответственно.
Для
того, чтобы охарактеризовать интенсивность
изменения формы и размеров тела, рассмотрим
точки А и В его недеформированного
состояния, расположенные на расстоянии
S друг от друга (рис. 1.5, б).
Рис. 1.5
Пусть в результате изменения формы тела эти точки переместились в положение Аў и Вў, соответственно, а расстояние между ними увеличилось на величину DS и составило S + DS. Величина
(1.6)
называется линейной деформацией в точке А по направлению АВ. Если рассматривать деформации по направлениям координатных осей xyz, то в обозначения соответствующих проекций линейной деформации вводятся индексы ex , ey , ez .
Линейные деформации ex , ey , ez характеризуют изменения объема тела в процессе деформирования, а формоизменения тела - угловыми деформациями. Для их определения рассмотрим прямой угол, образованный в недеформированном состоянии двумя отрезками ОD и ОС (рис. 1.5, б). При действии внешних сил указанный угол DOC изменится и примет новое значение DўOўCў. Величина
(Р DOC - Р DўOўCў) = g (1.7)
называется угловой деформацией, или сдвигом в точке О в плоскости СОD. Относительно координатных осей деформации сдвига обозначаются gxy , gxz , gyz .
Совокупность линейных и угловых деформаций по различным направлениям и плоскостям в данной точке образует деформированное состояние в точке.
1.6. Закон Гука
и принцип независимости
действия сил
Многочисленные экспериментальные наблюдения за поведением деформируемых тел показывают, что в определенных диапазонах перемещения точек тела пропорциональны действующим на него нагрузкам. Впервые указанная закономерность была высказана в 1776 году английским ученым Гуком и носит название закона Гука.
В соответствии с этим законом перемещение произвольно взятой точки А (рис. 1.5, а) нагруженного тела по некоторому направлению, например, по оси x, а может быть выражено следующим образом:
где Р - сила, под действием которой происходит перемещение u; dxЧ- коэффициент пропорциональности между силой и перемещением.
Очевидно, что коэффициент dx зависит от физико-механических свойств материала, взаимного расположения точки А и точки приложения и направления силы Р, а также от геометрических особенностей системы. Таким образом, последнее выражение следует рассматривать как закон Гука для данной системы.
В современной трактовке закон Гука определяет линейную зависимость между напряжениями и деформациями, а не между силой и перемещением. Коэффициенты пропорциональности в этом случае представляют собой физико-механические характеристики материала и уже не связаны с геометрическими особенностями си-
стемы в целом.
Системы, для которых соблюдается условие пропорциональности между перемещениями и внешними силами, подчиняются принципу суперпозиции, или принципу независимости действия сил.
В соответствии с этим принципом перемещения и внутренние силы, возникающие в упругом теле, считаются независящими от порядка приложения внешних сил. То есть, если к системе приложено несколько сил, то можно определить внутренние силы, напряжения, перемещения и деформации от каждой силы в отдельности, а затем результат действия всех сил получить как сумму действий каждой силы в отдельности. Принцип независимости действия сил является одним из основных способов при решении большинства задач механики линейных систем.
2. РАСТЯЖЕНИЕ И СЖАТИЕ
2.1. Внутренние силы и напряжения
Под растяжением (сжатием) понимают такой вид нагружения, при котором в поперечных сечениях стержня возникают только нормальные силы, а прочие силовые факторы равны нулю.
Рассмотрим однородный прямолинейный стержень длиной l и площадью поперечного сечения F, на двух концах которого приложены две равные по величине и противоположно направленные центральные продольные силы Р (рис. 2.1, а). Поместим начало плоской системы координат yz в центре тяжести левого сечения, а ось z направим вдоль продольной оси стержня.