Сопромат

Автор работы: Пользователь скрыл имя, 05 Октября 2009 в 18:09, Не определен

Описание работы

Современные базовые учебники по сопротивлению материалов, теории упругости, пластичности 13, 5, 7 изложены во внушительных объемах и в основном ориентированы на подробном изложении теории. Это обстоятельство усложняет процесс самостоятельного изучения предмета и послужило побудительной причиной подготовки настоящего издания.
В книге в доступной, но достаточно строгой форме изложены основные разделы классического курса сопротивления материалов, теории упругости и пластичности, которые сопровождаются подробными примерами расчетов, что несомненно должно облегчить процесс самостоятельного освоения предмета.

Файлы: 21 файл

П15.DOC

— 431.00 Кб (Скачать файл)

      Правило знаков принимается следующее: для линейных деформаций растяжению соответствует положительная деформация; для угловых деформаций положительное ее значение соответствует уменьшению прямого угла между положительными направлениями осей. По аналогии с напряженным состоянием, здесь также имеются главные деформации и главные площадки деформирования, которые являются инвариантами, независящими от осей координат.

      Принятая в механике деформируемого тела гипотеза о сплошности среды, выражающаяся, в частности, в том, что в одну и ту же точку пространства не могут придти две материальные точки, равно, как и не допускается разрывов среды, находит свое воплощение в уравнениях неразрывности деформаций. Как видно из (10.16), шесть компонентов деформаций выражаются через три функции перемещений следовательно между ними существует определенная связь в виде:

      ;

      ;

      ;    (10.17)

      ;

      ;

      .

      Убедиться в верности (10.17) можно просто достаточно подставить в них выражения (10.16). В случае плоской задачи, за исключением первого уравнения системы (10.17), остальные уравнения превращаются в тождество.

      В заключение заметим, что в каждой точке среды деформируемого тела всегда существуют три взаимно перпендикулярные плоскости, которые не испытывают сдвигов. Координатные оси, которые образуют эти плоскости, называются главными осями деформируемого состояния.

      Линейные деформации по главным осям называются главными деформациями и нормируются в порядке eee3 с учетом их знака, причем знак “плюс” относится к тем деформациям, которые вызваны в результате растяжения, и наоборот, знак “минус” относится к деформациям сжатия.

      Заметим, что для изотропного тела, свойства которого не зависят от направлений координатных осей, главные оси напряжений и деформаций совпадают.

10.4. Физические уравнения теории упругости для 
изотропного тела. Обобщенный закон Гука

      Для получения полной системы уравнений, описывающих напряженное и деформированное состояние тела, необходимо располагать равенствами, связывающими напряжения и деформации. В эти равенства должны входить параметры, характеризующие физические свойства материалов. Поэтому они называются физическими уравнениями механики сплошной среды.

      Составим аналитическое выражение обобщенного закона Гука, справедливого для идеально упругого изотропного тела. Для этого воспользуемся принципом независимости действия сил. Рассмотрим раздельно силы, возникающие на гранях элементарного параллелепипеда (рис. 10.1). При малых деформациях, действие касательных напряжений вызывает только формоизменение, а от действия нормальных напряжений происходит изменение линейных размеров выделенного элемента. Учитывая данное обстоятельство, для трех угловых деформаций получаем:

    ,  (10.18)

где модуль сдвига материала.

      Линейная деформация по оси x, обусловленная напряжением sх , будет равна . Напряжениям s, sz соответствуют деформации по оси x обратного знака, равные и , соответственно (здесь m - коэффициент Пуассона). Следовательно

.

      Аналогично можно определить относительные удлинения ребер параллелепипеда (рис. 10.1), перпендикулярных осям y и z. Записывая для ey и ez аналогичные уравнения окончательно получим:

         (10.19)

      Отсюда, получим выражение для объемной деформации

      . (10.20)

      Полученные соотношения (10.18 10.19) являются аналитическим выражением обобщенного закона Гука для упругого изотропного тела.

10.5. Возможные способы решения задач 
теории упругости

      В общем случае искомыми величинами в задачах теории упругости являются функции перемещений, компоненты напряженного и деформированного состояний среды. Следовательно, в каждой точке тела подлежат определению 15 величин: три компоненты смещений u, v и w; шесть компонент напряжений s, s, s, txy , txz  и tyz ; шесть компонент деформаций e, e, e, gxy , gxz , gyz .

      Очевидно, что для решения задачи в общем случае необходимо 15 уравнений, связывающих искомые величины, которые выполнялись бы не только внутри заданного тела, но и на его границе.

      Полученные выражения (10.2), (10.16), (10.18), (10.19) образуют такую систему. Для однозначного решения задачи необходимо задание условий на контуре тела граничных условий. Эти условия могут быть заданы в виде заранее определенных компонент напряжений (статические граничные условия) или компонент перемещений (кинематические граничные условия) или же комбинации тех и других (смешанные граничные условия).

      Если заданы граничные условия и требуется оценить напряженно-деформированное состояние заданного тела, то такая задача называется прямой задачей теории упругости. Если же по заданным функциям напряженно-деформированное состояния рассматриваемого тела требуется найти граничные условия им соответствующие, то такая задача называется обратной задачей теории упругости.

      Решение прямой задачи теории упругости можно вести разными способами. Если в качестве неизвестных принять функции перемещений u, v и w, то полную система уравнений (10.2), (10.16), (10.18), (10.19) можно свести к следующим трем дифференциальным уравнениям относительно этих функций:

        (10.21)

где - оператор Лапласа.

      Уравнения (10.21) называются уравнениями Ляме. Граничные условия также необходимо выразить через перемещения. В итоге контурные напряжения запишутся через перемещения в следующем виде:

  (10.22)

      Если же в качестве неизвестных принять компоненты напряженного состояния в произвольной точке тела s, s, s, txy , txz  и tyz , то к уравнениям равновесия (10.2) нужно присоединить уравнения совместности деформаций (10.17) и закон Гука (10.18-10.19). В результате совместного рассмотрения такой системы дифференциальных уравнений получаются так называемые уравнения Бельтрами:

 (10.23)

где Iпервый инвариант напряженного состояния в точке.

      Произвольные постоянные, получаемые в результате интегрирования уравнений (10.23), находятся при учете граничных условий, выраженных в следующем виде:

где X, Y, Z - компоненты полного напряжения на границе.

10.6. Теория предельных напряженных состояний

      При действии внешних сил материал конструкции может находиться в различных механических состояниях. При невысоких уровнях напряжений материал пребывает в упругом состоянии. При значительных напряжениях в материале обнаруживаются заметные остаточные деформации и он переходит в пластическое состояние. Затем, при дальнейшем увеличении внешних сил происходит образование местных трещин, и наступает его разрушение. Механическое состояние материала в точке зависит в первую очередь от напряженного состояния в ней. С целью определения прочности материалов вводится понятие предельное напряженное состояние. 
 

Литература.DOC

— 40.00 Кб (Просмотреть файл, Скачать файл)

Оглавление.DOC

— 28.00 Кб (Просмотреть файл, Скачать файл)

Информация о работе Сопромат