Автор работы: Пользователь скрыл имя, 04 Февраля 2012 в 19:09, курсовая работа
Применение средств экономико-математического моделирования в процессе решения задачи управления запасами позволяет:
- более эффективно использовать оборотные средства, складские площади и транспортные ресурсы;
- сокращать время поставки продукции контрагентам, повышая тем самым уровень сервиса и конкурентоспособность своего бизнеса;
- уменьшать время пребывания товара на складах, высвобождая тем самым оборотные средства;
- минимизировать затраты на обеспечение всех видов деятельности предприятия;
- оптимизировать управление всем видами ресурсов предприятия -материальными, трудовыми, финансовыми и т.д2.
Введение………………………………………………………………………….5
Раздел 1.Теоретическая часть
Математические модели управления запасами в экономике………..9
Классификация моделей управления запасами……………………..12
Детерминированные модели управления запасами…………………17
Стохастические модели управления запасами……………………...23
1.4.1 Управление запасами при случайном спросе и задержке в поставках…………………………………………………………….23
1.4.2 Расчет планового объема поставок при вероятностном спросе с фиксированной задержкой поставки…………………………………31
1.5 Динамическая модель управления запасами…………………………36
Раздел 2. Практическая часть
2.1 Нахождение оптимальных размеров заказываемой партии, интервал между заказами и общих среднесуточных издержек……….42
2.2 Нахождение оптимальных нижнего и верхнего критических уровней запаса при равномерно распределенном спросе…………..43
2.3 Нахождение верхнего и нижнего критических уровней при дискретно распределенном спросе………………………………...…45
2.4 Оценка величины погрешности функции затрат при фиксированной задержке поставки…………………………………………….47
2.5 Определение оптимальной программы производства ………….48
Заключение……………………………………………………………………….53
Список литературы……………………………………
Стоимость поставки:
Штрафы:
Ограничения в задачах управления запасами могут быть самого различного характера, например по таким показателям, как:
Стратегия управления запасами, т.е. структура правила определения момента и объема заказа, в практических приложениях обычно считается известной, и задача сводится к определению одной или нескольких констант (параметров стратегии)7. Примером подобной стратегии может быть следующая: если объем запасов z меньше критического уровня Y*, то количество товаров, которое необходимо заказать, составляет Y*-z; если же объем запасов z больше или равен Y*, то ничего заказывать не надо.
Необходимо отметить, что область применения теории управления запасами отнюдь не ограничивается складскими операциями. В частности, под запасом можно подразумевать:
Таким
образом, при соответствующем
В заключение необходимо отметить, что подстановка практических задач управления запасами, как правило, приводит к многономенклатурным ситуациям, необходимости совместного рассмотрения группы складов, случайным задержкам во времени. Все эти факторы существенно усложняют расчет оптимальных стратегий.
Ситуация, однако, существенно упрощается при выполнении каждого из следующих условий:
а)
поставка предметов снабжения
б) штрафы за недостачу либо суммируются по всем номенклатурам, либо вообще отсутствуют;
в) на выбор параметров стратегии управления запасами не наложено общих для групп номенклатур ограничений или такие ограничения не существенны;
г) критерием качества организации снабжения для каждого склада служит сумма затрат на данном складе;
д) отношение среднего квадратичного отклонения задержки поставок к ее среднему значению мало.
Выполнение условий а, б и в позволяет расчленить многономенклатурную задачу на однономенклатурные, благодаря условию г появляется возможность независимого рассмотрения каждого склада, а выполнение условия д обеспечивает приближенное сведение случайной задержки поставок к фиксированной (в частности, к нулевой).
Рассмотрим
метод расчета параметров оптимальных
стратегий при
Динамика изменения уровня запаса при детерминированном спросе показана на рисунке 1.
Рисунок 1 - Динамика изменения уровня запаса
Полный
цикл работы склада имеет положительность
Т. Обозначим через
предельный запас на складе. Считая
расходы на хранение (и штрафы) пропорциональными
среднему запасу (дефициту) и времени их
существования, получаем следующее выражение
для функции затрат за цикл:
Очевидно, что
Максимальный дефицит _ выражается через как
Подставим и , и получаем
.
Перепишем функцию затрат с учетом линейности изменения уровня запаса:
.
В развернутом виде
,
оттуда затраты в единицу времени
(1)
Найдем частные производные от L1 по и T и приравняем их к нулю:
(2)
(3)
Совместимое решение этих уравнений дает для оптимальных и Т условия
(4)
(5)
При этом достигается минимум затрат в единице времени
. (6)
Момент
запуска производства определяется
достижением наибольшего
(7)
Из полученных соотношений как частные случаи легко выводятся более известные формулы запасов.
Так, например, при высоком штрафе можно принять
При этом
(8)
(9)
(10)
а
недостачи полностью
Другой частный случай соответствует высокой интенсивности восполнения запаса – условие, типичное для поставок с вышестоящего склада, когда весь объем затребованной партии отгружается разом. В этой модели
(11)
(12)
(13)
Наиболее широкое применение нашли формулы, выведенные при обоих рассмотренных допущениях (так называемые формулы Уилсона, полученные еще в 20-х годах)8:
(14)
(15)
(16)
Помимо рассмотренных выше показателей представляют интерес еще два – объем заказываемой партии q и точка заказа при задержке τ между заказом и началом поставки. Первый из них равен спросу µТ за период, так что для общего случая
(17)
а при µ/λ→0
(18)
В моделях с высоким штрафом Точка заказа при задержке поставок определяется как –
Входящие в формулы данной бакалаврской экономические коэффициенты можно считать постоянными лишь в первом приближении – в некотором диапазоне объемов партий q. Так, цена заказа g и цена хранения h могут быть ступенчатыми возрастающими функциями q (при увеличении q, вероятно, потребуются дополнительные затраты на организацию производства, новые складские емкости). В подобных случаях необходимо задать некоторые априорное значение q0 ( например, середину допустимого диапазона), рассчитать h(q0) и g(q0) и по приведенным выше формулам найти q1.
Если h(q0) = h(q1) и g(q0)= g(q1), полученное значение q является окончательным. В противном случае вычисления повторяются при h(q1) и g(q1) и т.д. последовательные приближения, как правило, сходятся к искомому решению достаточно быстро.
Практический интерес вызывает задача определения продажной цены изделия S с учетом зависимости от нее интенсивности спроса µ. Будем считать, что спрос обеспечивается полностью, а себестоимость единицы продукции составляет u. Используя (10), можно для дохода в единицу времени записать выражение
(19)
Максимальный доход достигается при или при
(20)
Решать подобные уравнения удобно графически.
Простейшим случаем управления запасами при вероятностном спросе является однократное принятие решения о пополнении запаса (если решение не принимается вообще, теряет смысл само принятие управления).
Практическими примерами таких ситуаций являются все однократные процессы с относительно небольшой потребностью в материалах и оборудовании (некоторые виды строительства, обеспеченье испытательных работ), а снабжение потребителей в труднодоступных и удаленных районах9.
Модель
этого вида может быть названа
статистической.
1.4.1Управление запасами при случайном спросе и задержке в поставках
Структура
оптимальных стратегий при
Пусть z – запас к началу операции;
Y – запас после его пополнения (очевидно, Y ≥ z);
x ≥ 0 – случайный спрос за время Т операции;
f(x) – плотность распределения спроса;
c(Y – z) – расходы на пополнение запасов.
Предполагается, что поставка производится до прихода первого требования и, следовательно, расходуется запас Y. Если к концу операции на складе осталось невостребованного товара ( Y – x) > 0 система снабжения несет избыточные расходы на хранение hT(Y – x), но может частично компенсировать убытки продажей этого товара за υ(Y – x). При x ≥ Y справедливо соотношение υ(Y – x) = =hT(Y-x) = 0. При не полном удовлетворении спроса x > Y, и только при этом условии склад платит штраф pT(x – Y).
Математическое ожидание расходов на хранение и штрафы:
(21)
Общие же средние затраты на хранение, штрафы и пополнение запасов будут равны
Продолжим c(Y – z) аналитически в область Y – z < 0 и будем считать, что функция NT(Y, z). Определена для Y ≥ 0 независимо от z. Найдем, при каком значении Y ≥ z величина LT(Y, z) минимальна. Для этого вычислим производную