Автор работы: Пользователь скрыл имя, 17 Февраля 2011 в 15:55, шпаргалка
Расчеты на прочность. Виды циклов.
Расчеты на прочность. Виды циклов.
Контактное напряжение dH = F/A = сила / площадь. Напряжение сжатия/растяжения определяется как dСМ=F/A = £ [d], A = F/[d].
Напряжение среза tСР = F/A = срезающая сила / площадь среза.
Напряжение изгиба dF=M/W = изгибающий момент / полярный момент сопротивления сечения изгибу W=0,1×d3.
tКР =TКР/WP , где WP = 0,2d3 – полярный момент сопротивления сечения изгибу.
По характеру действия напряжения могут быть:
– Переменное напряжения, представляющее собой знакопеременный асимметричный цикл
dm = (dmax+dmin) /2– среднее значения напряжения цикла , dA = (dmax–dmin) /2 – амплитуда напряжения. Коэффициент асимметрии цикла Rd = dmin / dmax.
– Частные случаи
статический (Rd = 1)
отнулевой (Rd = 0)
симметричный (Rd= –1)
Физико-механические свойства материалов
dT – предел текучести для пластичных материалов
dВ – предел прочности для хрупких материалов
d-1 – предел выносливости
E – модуль упругости
HB – твердость по Бринелю
HRC – твердость по Роквеллу
С – удельная теплоемкость
d – относительное удлинение
dLIM делится на две части:
dT
– для пластичных материалов
dLIM = dT × KD KD – коэффициент влияния абсолютных размеров поперечного сечения |
dВ
– для хрупких материалов
dLIM = dВ×KD / KS KS – коэффициент влияния концентратов напряжения. |
Запас прочности n = dLIM /dD ³ [n]
n = d-1 / (Kdd×dA+yd), где Kdd – коэффициент смещения пределов выносливости, yd – коэффициент чувствительности материала.
Kd – масштабный фактор, KF – шероховатость, KV – фактор упрочняющей поверхности.
Расчет ведется по кривой усталости, построенной в координатах d(N), где N – число циклов работы деталей.
d-1 – длительный предел выносливости.
Ni – циклическая долговечность
m зависит от материала, от вида нагружения и устанавливается экспериментально.
Уравнение кривой усталости: dim×Ni = C(const). Используется при расчете зубчатых, червячных и подшипниковых передач.
Вероятностный расчет на прочность
Расчет по эквивалентному числу циклов.
Эквивалентное число циклов равно NE=mP ×NS, где mP – коэффициент режима работы, равный mP = 1/a ×S[(Ni / NS) × (di /dmax)m]. NS = 60×nЗ × (Sni×ti)×gn, где nЗ – число циклов нагружения за 1 оборот (в зуб. передачах). Sni×ti – число циклов нагружения в течение суток, g – число рабочих дней в году, n – срок службы детали в годах. mP = S×ti/tdn ×(Ti/Tmax)p, NS=60 × nЗ× n × tS, tS – ресурс работы, n – частота вращения вала.
Последовательность проектирования
1. выбор принципиальной схемы механизма
2. выбор материала
3. расчет основных
размеров деталей механизма по
тем критериям
4. проведение
проверочных расчетов по всем
основным критериям
Виды механических передач.
По принципу передачи вращения | С постоянным контактом | С гибкой связью |
Трением | Фрикцион. | Ремен. |
Зацеплен. | Зубчатые, червяные, винтовые и др. | Цепные, ременно-зубчатые |
Передачи могут быть понижающие – редукторы и повышающие – мультипликаторы. Передаточное число определяется отношением w1/w2 = n1/n2, 1 – ведущее, 2 – ведомое. По числу степеней передачи делятся на:
– бесступенчатые (вариаторы)
– одноступенчатые
– многоступенчатые (с помощью зуб. колес, либо ременными передачами со ступенчатыми шкивами).
В зависимости от расположения валов различают передачи:
1) с параллельными валами:
– зубчатые передачи
– фрикционные передачи
– ременные передачи
– цепные передачи
2) с пересекающимися валами
– коническая передача
3) с перекрещивающимися валами
– червячные передачи
Виды механических
передач
1) фрикционные передачи
Преимущества:
– простота конструкции
– постоянство угловой скорости
– возможность применения для бесступенчатого регулирования угловой скорости
– бесшумность работы
Недостатки:
– большие нагрузки на валы Þ низкий КПД
– большие габариты (больше, чем у зубчатых при одном и том же передаточном отношении)
– большое тепловыделение
2) Зубчатые передачи
Преимущества:
– небольшие габариты
– высокая несущая способность (моменты, скорости частоты)
– высокий КПД
– постоянство передаточного отношения
Недостатки:
– требует высокой точности изготовления
– требуют хорошей смазки
– шумная работы
3) Червячные передачи
Преимущества:
– плавность работы
– мыле габариты при большом пер. отношении
Недостатки:
– низкий КПД
– нагрев
– износ зубьев
– применение дорогостоящих материалов
4) Ременные передачи
Преимущества:
– простота и бесшумность
– возможность большого межосевого расстояния
– возможность бесступенчатого регулирования.
– предохраняют от перегрузки
Недостатки:
– невысокая нагрузочная способность
– низкий ресурс ремня
– непостоянство передаточного отношения
5) Цепные передачи
Достоинства:
– возможность применения в значительном диапазоне межосевых расстояний
– габариты, меньшие, чем у ременной передачи
– отсутствие проскальзывания
– высокий КПД
– малые силы, действующие на валы
Недостатки:
– работает в условиях отсутствия жидкостного трения
– требует большой степени точности установки валов
– неравномерность хода цепи
Порядок расчета привода
1) Подбор электродвигателя
а) мощность на приводном валу;
б) КПД всей цепи (hзуб=0,96,
hцеп= 0,93);
в) Ориентировочная потребная мощность электродвигателя;
г) Выбираем двигатель по каталогу по значению ориентировочно потребной мощности.
2) Частота вращения приводного вала n = 60V /pd;
3) Определяем значение Uобщ = nел.дв /
n пр.вала;