Автор работы: Пользователь скрыл имя, 17 Февраля 2011 в 15:55, шпаргалка
Расчеты на прочность. Виды циклов.
4) Находим передаточное число каждой из передач;
5) Определяем частоты вращения каждого из валов (начиная с первого – ел. двигателя);
6) Находим мощность на каждом валу (начиная с последнего – приводного);
7) Определяем вращающиеся моменты на валах (T1=9550 × P1/n1, Ti= Ti-1×Uпер×hпер);
8) Находим диаметры валов;
ЗУБЧАТЫЕ ПЕРЕДАЧИ
Достоинства:
– Компактность
– Высокий КПД
– Высокая долговечность
– Надежность работы в разных условиях
– Простота эксплуатации
– Малые нагрузки на валы и опоры
– Неизменность передаточного отношения
Недостатки:
– Высокие требования к точности изготовления
– Значительный шум, вследствие неточности изготовления
– Передача не смягчает вибрации, а сама является их источником
– Не может служить предохранителем
– Большие габариты при необходимости больших межосевых расстояний
– Невозможность обеспечить бесступенчатое регулирование.
Классификация зубчатых передач
1) по конструкции: открытые и закрытые передачи. Открытые не защищены от абразивной пыли, периодическая смазка, валы вмонтированы в отдельные агрегаты, применяются только для тихоходных передач. Закрытые передачи защищены корпусом, смазка окунанием или поливанием под давлением. Высокая точность монтажа.
2) по скорости: весьма тихоходные (£0,5 м/с), тихоходные (0,5 £ V £ 3 м/с), средне тихоходные (3 £ V £ 15 м/с), скоростные (15 £ V £ 40 м/с), высокоскоростные (V > 40 м/с).
3) по расположению валов и форме колес
а) передача с параллельными валами
прямозубая | косозубая | шевронная |
В прямозубой нет осевых сил и больше динамические нагрузки Þ большой шум. В шевронной передаче осевые силы уравновешенны, большой угол наклона зуба и работает плавно.
б) передача с пересекающимися валами
– с прямым зубом
– с косым тангенсальным зубом
– с криволинейным круговым зубом
в) передачи с перекрещивающимися валами
– цилиндрические колеса (винтовая пара)
– конические и червячные колеса
4) по точности изготовления. 12 классов точности, при этом первый самый точный, 12 самый грубый.
Материалы зубчатых колес
1) Стали в нормированном, улучшенном и закаленном состоянии. Ст40, 30ХГТ
2) Стальное литье 35Л, 45Л и т.д.
3) Чугунное литье СЧ30, СЧ50
4) Пластмассы
Виды разрушений зубьев и виды расчетов
1) Излом зуба (изгиб зуба)
а) мгновенный излом
от нарушения статической
б) усталостный излом в результате многократного изгиба зуба.
2) разрушение рабочей поверхности в виде:
а) абразивный износ
б) заедание и волочение из-за отсутствия смазки или недостаточной вязкости
в) выкрашивание – появление и развитие усталостных трещин на поверхности. При этом повышаются контактные напряжения.
г) смятие поверхности.
Наиболее опасным является уставлостный излом и усталостное выкрашивание, другие виды разрушение можно избежать конструктивно.
Выводы: закрытая передача на заданный срок службы должна быть рассчитана на сопротивление контактной усталости dH и проверена на сопротивление по изгибу dF. Для открытых передача на заданный срок службы рассчитывается изгиб и проверяются на сопротивление контактной выносливости.
Силы в зубчатой паре
1. В прямозубой передаче действует нормальная сила Fn, которая состоит из следующих сил:
Ft – окружная сила (касательно к начальной окружности), FR – радиальная сила (к центру окружности). Ft=2000×T1/dW1, FR=Ft × tg aW, где aW – угол зацепления.
2) В косозубых передачах действуют следующие силы:
радиальная сила FR=Ft×tg a / cos bW, где bW – угол наклона зуба,
осевая сила (вдоль оси) FX = Ft × tg bW, окружная сила Fn=Ft / (cos a ×cos bW).
Основные параметры зубчатых передач.
m – модуль, aW – межосевое расстояние, Yd =bW(ширина)/dW – коэффициент ширины, a = 20° – угол профиля, U – передаточное число. Для повышения контактной или и изгибной прочности применяют смещение зуборезного инструмента, т.е. a < 20°.
Особенности работы косозубой передачи
Коэффициент перекрытия eb = bW/PX, где bW – ширина колеса, PW – осевой шаг. Если eb целое число, то число полных контактных линий на одновременно зацепляющихся зубьев будет такое же I = bW/PW . Если eb ³ 1, то передача работает как косозубая. Если eb <0,9 – косозубая передача как прямозубая. ea – коэффициент торцевого перекрытия
eg – суммарный коэффициент перекрытия eg = ea + eb.
Определение расчетной нагрузки.
Rn распределяется неравномерно:
1) между одновременно работающими парами зубьев.
2) по длине зуба
3) возникает дополнительная внутренняя динамическая нагрузка.
4) внешняя динамическая нагрузка.
T1H=T1×KH
T1F=T1×KF
Коэффициент нагрузки:
KH = KA×KHV×KHb×KH£
KF = KA×KFV×KFb×KF£,
KA – коэффициент внешней динамической нагрузки;
KHV, KFV – коэффициенты, учитывающие динамическую нагрузку. Зависит от двигателя и от режима нагружения.
KHb, KFb – коэффициенты, учитывающие неравномерность распределения нагрузки по длине контактных линий. Зависит от твердости поверхности зубьев, относительной ширины, расположения колес относительно опор валов.
KH£, KF£ – коэффициент, учитывающий распределение нагрузки по парам зубьев. Для прямозубой передачи равен 1, для косозубой определяется по формуле (См. Приложение), в которой B – фактор, учитывающий влияние торцевой жесткости пары.
Расчет зубчатых передач на сопротивление контактной усталости
Целью расчета является предотвращение усталостного выкрашивания.
Расчет производится по формуле Герца-Беляева. Зависимость Герца-Беляева для нормальных напряжений в месте контакта двух сухих неподвижных цилиндров из изотропных материалов
qH – удельная погонная сила по нормали к профилю; n1, n2 – коэффициент пуансона; E1, E2 – модуль упругости материала, r – радиусы кривизны каждого цилиндра. 1/r=1/r1 ± 1/r2, «+» для внешного зацепления, «–» для внутренного зацепления.
Формула Герца-Беляева для пары зубчатых колес
ZE – коэффициент,
учитывающий свойства материалов
Ze – коэффициент, учитывающий суммарную длину контактных линий
– для прямозуб.
– для косозубых
Расчет передач на сопротивление усталости при изгибе
Расчет выполняется при предположениях, что зуб нагружен силой FH, в зацеплении находится одна пара зубьев, а также силы трения отсутствуют.
Наибольшее трение в точке b, однако растягивающий эффект в точке a, r – радиус выпуклости зуба,
£ [d]F
YFS – коэффициент, учитывающий форму зуба и концентрацию напряжения
Yb – коэффициент, учитывающий угол наклона
Ye – коэффициент, учитывающий перекрытие зубьев. Ye= 1/e£ – для косозубой передачи, Ye = 1 для прямозубой передачи.
m выбрать по возможности меньше, z соответственно больше. m=(0,01 ... 0,02)aW. В случае открытой передачи
Расчет по модулю
Если прочность на изгиб является основным критерием работоспособности. Расчет ведется в форме определения модуля по заданным числам зубьев с последующей проверкой контактной прочности (или формула выше)