Технология хлеба и хлебобулочных изделий

Автор работы: Пользователь скрыл имя, 18 Апреля 2012 в 23:23, реферат

Описание работы

Технологическая схема производства хлеба и хлебобулочных изделий включает в себя следующие этапы: хранение и подготовка сырья к производству, приготовление и разделка теста, выпечка и хранение хлеба. На рис. 1 приведена схема производства хлеба на современном хлебозаводе.

Файлы: 1 файл

Khleb.doc

— 2.95 Мб (Скачать файл)

ТЕХНОЛОГИЯ ХЛЕБА И  ХЛЕБОБУЛОЧНЫХ ИЗДЕЛИЙ

 

Технологическая схема производства хлеба и хлебобулочных изделий включает в себя следующие этапы: хранение и подготовка сырья к производству, приготовление и разделка теста, выпечка и хранение хлеба. На рис. 1 приведена схема производства хлеба на современном хлебозаводе.

Рис. 1. Схема производства хлеба на современном хлебозаводе

 

Муку доставляют на хлебозавод автомуковозами 1, а дополнительное сырье автомашинами 2. По трубопроводу 3 мука через дисковые переключатели 5 поступает в силосы 4 для хранения. Фильтры 6, 10, 14 служат для очистки транспортирующего воздуха от мучной пыли. Затем роторными питателями 7 мука из силосов направляется в промежуточную емкость 8, которая находится над просеивателем 9, и далее в промежуточную емкость 11. После взвешивания на весах 12 мука ссыпается в бункер 13, а затем по мукопроводу поступает в  производственный бункер 15.

Вода подготавливается в водомерных бачках 16, а дополнительное сырье в виде растворов в сборниках 17...20. Для замеса теста в тестомесильную машину 26 бункерного тестоприготовительного агрегата 29 дозатором 25 отмеривается мука, а из бачков постоянного уровня 21...24 дозатором 27 подаются растворы дополнительного сырья. Выброженное тесто питателем 28 направляется в делитель 30, откуда в виде отдельных кусков определенной массы транспортерами  31,  33 в округлитель 32, а затем в закаточную машину 34.

Укладчик-манипулятор 35 перекладывает тестовые заготовки на люльки расстойного шкафа 36. Расстоявшиеся заготовки транспортером 37 подаются на под туннельной печи 38. Выпеченный хлеб транспортером 39 направляется на распределительный транспортер 40 или тележку 48. С помощью устройств для ориентирования 41 хлеб поступает на хлебоукладочный агрегат 42, а затем на полки контейнеров 43. Для подсортировки заказов торговой сети служит комплектующая тележка 45. Загруженные контейнеры собираются в накопителях 44, откуда они перемещаются загрузочным контейнером 46 к автохлебовозам, которые с помощью стыковочного механизма 47 крепятся к местам погрузки на рампе экспедиции.

1. ХРАНЕНИЕ И ПОДГОТОВКА МУКИ К ПРОИЗВОДСТВУ

 

Свежесмолотая мука не годится для выпечки хлеба, так как образует мажущееся, расплывающееся тесто и хлеб получается плохого качества (малого объема, пониженного выхода и т. п.), поэтому такую муку в хлебопечении никогда не применяют. Она должна пройти отлежку или созревание в благоприятных условиях, при которых ее хлебопекарные свойства улучшатся.

Созревание пшеничной муки проводят на мелькомбинатах в течение 1,5...2 мес. При этом меняется влажность муки в зависимости от параметров окружающего воздуха; цвет ее становится светлее в результате окисления каротиноидов; увеличивается кислотность в основном за счет разложения жира и образования жирных кислот, а также в результате накопления других кислотореагирующих веществ (кислых фосфатов, продуктов гидролиза белков и др.). Следствием возрастания кислотности являются глубокое изменение белков, укрепление структурно-механических свойств клейковины, уменьшение ее растяжимости и увеличение упругости. Слабая непосредственно после помола клейковина при отлежке приобретает свойства средней; средняя по силе становится сильной, а сильная – очень сильной.

Длительность созревания муки зависит от ее сорта, влажности и условий хранения. Повышение выхода муки, ее влажности и температуры хранения ускоряет процесс созревания, так как создаются более благоприятные условия для окислительно-восстановительных процессов. Для ускорения созревания используют химические улучшители, а также пневматическое перемещение муки с помощью сжатого, особенно нагретого, воздуха.

Созреванию подвергают только пшеничную муку; ржаная мука при отлежке свои хлебопекарные свойства не изменяет, поэтому в созревании не нуждается.

Существует два способа транспортирования и хранения муки на предприятиях: тарный, когда муку перевозят и хранят в мешках, и бестарный, когда муку перевозят в автомуковозах и хранят в бункерах или силосах. Бестарный способ перевозки и хранения муки имеет ряд преимуществ перед тарным, так как позволяет механизировать и автоматизировать операции по разгрузке муки и управлять ими с пульта. Кроме того, при тарном способе хранения возникают дополнительные потери муки, связанные с ее распылом и остатками в опорожненных мешках.

В настоящее время используется бестарный способ хранения муки в емкостях различных конструкций и размеров, изготовленных из металла, монолитного или сборного железобетона. Емкости состоят из верхней цилиндрической или прямоугольной части и нижней конусной. Емкости, у которых отношение высоты (без конусной части) к меньшему диаметру больше или равно 1,5, называются силосами. Если это отношение меньше 1,5, то такие емкости называются бункерами. Конусное дно может иметь различный уклон к горизонту (10, 12 или 60°). При хранении в силосах мука слеживается, что затрудняет ее выборку. Чтобы придать ей текучесть, днище силоса выполняют аэрируемым, т.е. из керамических пористых плит. В днище через патрубки подают сжатый воздух, который разрыхляет нижние слои муки. В каждом силосе муку хранят только одного сорта и только одной партии. Для работы предприятия склад должен обеспечивать хранение не менее 7-суточного запаса муки.

Нашел применение открытый способ размещения установок для бестарного хранения муки вне зданий на территории хлебозаводов. Это позволяет сэкономить средства на строительстве здания склада, сократить сроки ввода установок в эксплуатацию и уменьшить взрывоопасность.

Склад бестарного хранения муки оборудуют установками для приема муки и ее внутризаводского транспортирования, автоматическими весами для учета поступающей на производство муки и просеивателями с магнитными уловителями.

Муку можно транспортировать на производство механическим, пневматическим или аэрозольным транспортом (с помощью сжатого воздуха по трубопроводам). На предприятиях пищевой промышленности предпочтение отдают аэрозольному транспортированию, так как оно обеспечивает высокую концентрацию муки в смеси с воздухом, уменьшает удельный расход воздуха и позволяет при малых сечениях трубопроводов достигать высокой производительности. При пневматическом транспортировании 1 м3 воздуха перемещает 5...6 кг муки, а при аэрозольном примерно 60...120 кг.

На современных хлебопекарных предприятиях применяются установки для бестарного хранения муки с аэрозольтранспортом (рис. 2). Гибкий шланг автомуковоза присоединяется к приемному шнеку 1, и мука сжатым воздухом от компрессора муковоза перекачивается в силосы 4. Для последовательного заполнения мукой силосов трубопроводы 2 и 7 оборудованы переключателями 5. На крышке силосов установлены также фильтры 6, служащие для отделения от муки транспортирующего воздуха. Если мука поступает в мешках, то ее разгружают в приемник для муки 3. Для перемещения муки из одного силоса в другой, например при ее согревании в результате длительного хранения или очистке силосов изнутри, установка оборудована дополнительным трубопроводом. Мука из силосов подается на производство сжатым воздухом, поступающим от компрессорной станции через питатель 10. По трубопроводу мука поступает в бункер-разгрузитель 8 автоматических весов 9 и далее на контрольное просеивание.

Рис. 2. Схема установки для бестарного хранения муки

 

Перед подачей муки для приготовления теста производится ее подготовка к производству, которая заключается в подсортировке отдельных партий, их просеивании и магнитной очистке. Отдельные партии муки могут значительно отличаться по своим хлебопекарным качествам, поэтому перед подачей на производство принято составлять смесь различных партий муки в пределах одного сорта. Муку со слабой клейковиной смешивают с сильной; муку, темнеющую в процессе переработки, – с нетемнеющей и т. д. Соотношение компонентов в мучной смеси определяет лаборатория на основании анализа. При этом исходят из необходимости улучшить свойства одной партии муки за счет другой. Обычно смешивают две или три партии муки в простых соотношениях (1:1, 1:2, 1:3 и т. д.) на специальных машинах мукосмесителях.

Для просеивания муки с целью удаления случайных посторонних примесей применяют бураты, вибросита или просеиватели других конструкций. Муку просеивают через сито из стальной сетки с ячейками определенного размера.

Для очистки муки от металломагнитных примесей в выходных каналах просеивающих машин устанавливают магнитные уловители, которые очищают через каждые 4 ч работы. При использовании аэрозольтранспорта вместо слабых постоянных магнитов применяют электромагнитные сепараторы.

 

 

 

2. ПОДГОТОВКА ДОПОЛНИТЕЛЬНОГО СЫРЬЯ К ПРОИЗВОДСТВУ

 

Вода. Качество питьевой воды установлено стандартами. На каждом хлебозаводе должен быть запас холодной воды, рассчитанный на 8 ч работы предприятия, и запас горячей воды на 4 ч работы.

Для приготовления теста на 100 кг муки расходуют от 35 до 75 л питьевой воды.

Количество воды в тесте зависит:

- от вида муки и изделий. Наименьшую влажность имеет тесто, предназначенное для бараночных изделий, наибольшую для ржаного хлеба из обойной муки;

- от влажности муки. Чем суше мука, тем больше воды она поглощает при замесе;

- от количества сахара и жира, добавляемых по рецептуре, которые как бы разжижают тесто. При внесении значительных количеств сахара и жира сокращают количество воды, добавляемой при замесе.

Соль. В рецептуру хлебобулочных изделий, за исключением диети­ческих бессолевых сортов, входит поваренная соль в количестве от 1 до 2,5 % к массе муки. Она улучшает вкус изделий, существенно влияет на физические свойства теста, укрепляя его клейковину. Состояние же дрожжей в присутствии соли ухудшается, так как соль задерживает процессы спиртового и молочнокислого брожения в тесте.

Соль доставляют на хлебозавод в мешках или насыпью и хранят в отдельных помещениях. Раствор соли готовят в солерастворителе, который представляет собой бак из двух отделений. Одно заполнено слоем соли, в который поступает вода, образуя насыщенный раствор 26%-й концентрации; второе служит отстойником раствора соли после фильтрования. В настоящее время применяют новый (мокрый) способ хранения соли, для этого ее ссыпают в металлический или бетонный бункер растворитель, к которому подведена вода. В хранилище образуется раствор соли плотностью 1,16...1,2 кг/л. Перед подачей на производство раствор соли фильтруют и перекачивают в расходные баки.

Дрожжи. В хлебопечении применяют прессованные, сушеные и жидкие дрожжи и дрожжевое молоко.

Прессованные дрожжи  представляют собой выращенные в особых условиях дрожжевые клетки, выделенные из среды, в которой они размножались. Их влажность составляет до 75 %, поэтому они являются скоропортящимся продуктом и требуют хранения при температуре 0...4 °С в течение не более 12 сут. Важным показателем качества дрожжей является их подъемная сила, или быстрота подъема теста, характеризующая способность дрожжей разрыхлять тесто. Хорошие дрожжи поднимают тесто за 60...65 мин.

Расход прессованных дрожжей для приготовления пшеничного теста составляет 0,5...3 % к массе муки и зависит от ряда факторов:

- подъемной силы дрожжей. Чем она ниже, тем больше требуется дрожжей;

- длительности процесса брожения теста и способа его приготовления. Чем больше длительность брожения, тем меньше расход дрожжей; для безопарного способа приготовления теста требуется 1,5...3 %, а для опарного 0,5...1 % дрожжей;

- количества сахара и жира, содержащихся в тесте. Эти продукты угнетают жизнедеятельность дрожжей, поэтому увеличивают количество вводимого разрыхлителя (дрожжей).

Подготовка прессованных дрожжей к производству состоит в освобождении их от упаковки, предварительном грубом измельчении и приготовлении хорошо размешанной однородной массы (суспензии) в теплой воде температурой 30....35 °С.

Сушеные дрожжи получают из прессованных путем высушивания в определенных условиях до влажности 8...10 %. Сушеные дрожжи могут храниться продолжительное время (при температуре не более 10 °С до 1 года). Они имеют светло-желтый или светло-коричневый цвет с дрожжевым запахом, подъемная сила их составляет до 90 мин. Сушеные дрожжи применяют в тех случаях, когда невозможно доставить на завод или сохранить прессованные дрожжи.

На хлебозаводах, расположенных недалеко от дрожжевых предприятий, применяется дрожжевое молоко. Дрожжевое молоко это жидкая суспензия дрожжей в воде, полученная при сепарировании культуральной среды после размножения в ней дрожжей. Дрожжевые клетки в этом продукте находятся в более активном биологическом состоянии, чем в прессованных дрожжах. Кроме того, на дрожжевых заводах в этом случае исключаются такие операции, как прессование и упаковывание. Дрожжевое молоко доставляют на завод в термоизолированных цистернах-молоковозах, из которых оно поступает в приемные металлические емкости, оборудованные мешалками, где хранится в течение 1,5...2 сут при температуре 6...10 °С.

Жидкие дрожжи представляют собой мучную среду, в которой находятся активные дрожжевые клетки и молочнокислые бактерии. Жидкие дрожжи готовят непосредственно на хлебозаводах, они применяются для разрыхления пшеничного теста в количестве 20...35 % к массе муки.

Сахар-песок, жир. В хлебопечении применяют сахар-песок и сахарную пудру, качество которых определяется соответствующими стандартами. Сахар-песок добавляют в тесто при изготовлении булочных и сдобных изделий в количестве 2,5...30 % к массе муки, сахарную пудру используют для отделки поверхности сдобных изделий.

Сахар песок оказывает существенное влияние на качество теста и готового хлеба. Он разжижает тесто, поэтому надо делать поправку на количество вносимой воды; его добавление в небольшом количестве (до 10 % к массе муки) ускоряет брожение теста, а при повышенной дозировке угнетает. Поэтому если по рецептуре требуется большое количество сахара-песка и жира, то их вносят в тесто в конце брожения. Эта операция называется отсдобкой. Кроме того, сахар-песок улучшает вкус, аромат, окраску хлеба, повышает его энергетическую ценность.

На хлебозаводе, как правило, хранят 15-суточный запас сахара-песка, который обычно поступает в мешках. При подготовке к производству сахар-песок растворяют в воде в бачках с мешалками при температуре около 40 °С до концентрации раствора 55 %, а затем перекачивают в сборники. Возможно поступление сахара на завод в виде сахарного сиропа.

Жир вносят в тесто в количестве до 20...30 %. Для приготовления большинства изделий используется маргарин, для некоторых видов сдобных изделий животное масло. Растительные масла применяются также при разделке теста, для смазки форм и листов.

Жиры повышают энергетическую ценность изделий, улучшают иx вкусовые качества, увеличивают объем хлеба, повышают пластичность теста, несколько укрепляют клейковину. В то же время они снижают интенсивность брожения теста. Желательно, чтобы жиры, применяемые в хлебопечении, были безводными и хорошо эмульгировались в воде, имели пластичную структуру и невысокую температуру плавления.

Твердые жиры растапливают в бачках с водяной рубашкой и мешалкой. Температура маргарина при этом не должна превышать 40...45 °С, иначе произойдет расслоение массы на жир и воду, что нарушит равномерное распределение жира в тесте.

Жир (растительной масло, маргарин) улучшит качество хлеба, если его вносить в тесто в виде предварительно приготовленной тонкодисперсной эмульсии с применением пищевого эмульгатора, например фосфатидного концентрата (ФК) следующего состава (%): маргарин 50, фосфатидный концентрат 5...7, вода 45. Такая эмульсия устойчива, она не расслаивается в течение 2...3 сут, хорошо транспортируется по трубам. Внесение эмульсии значительно улучшает качество хлеба, задерживая его черствение.

3. ПРИГОТОВЛЕНИЕ ТЕСТА

 

Для каждого сорта хлеба существуют унифицированные рецептуры, в которых указывают сорт муки и расход каждого вида сырья  (в кг на 100 кг муки). На их основании лаборатория хлебозавода составляет производственные рецептуры, в которых указывает дозировку муки, дополнительного сырья, растворов, полуфабрикатов (закваски, заварки, жидких дрожжей) на замес одной порции опары (закваски) и теста в зависимости от мощности завода, его оборудования, принятого способа тестоведения, а также технологический режим приготовления изделий (температура, влажность, кислотность полуфабрикатов, продолжительность брожения, обминок, условия расстойки и выпечки).

Замес теста короткая, но весьма важная технологическая операция. Длительность замеса для пшеничного теста составляет 7...8 мин, для ржаного 5...7 мин.

Цель замеса получить однородную массу теста с определенными структурно-механическими свойствами. При замесе одновременно протекают физико-механические и коллоидные процессы, которые взаимно влияют друг на друга. Коллоидные процессы, или процессы набухания, связаны с основными составными частями муки белками и крахмалом. Белки пшеничной муки, поглощая влагу, резко увеличиваются в объеме и образуют клейковинный каркас, внутри которого находятся набухшие зерна крахмала и частицы оболочек. Слипание частиц в сплошную массу, происходящее в результате механического перемешивания, приводит к образованию теста. Однако чрезмерный замес может вызвать разрушение уже образовавшейся структуры теста, что приведет к ухудшению качества хлеба.

Тесто после замеса состоит из трех фаз: твердой, жидкой и газообразной. От соотношения этих фаз зависят свойства теста: увеличение количества жидкой фазы «ослабляет» его, делает более жидким, текучим, липким. Этим объясняются различные свойства пшеничного и ржаного теста. Пшеничное тесто эластичное, упругое, а ржаное – вязкое, пластичное. Твердая фаза в пшеничном тесте состоит из набухших нерастворимых в воде белков, зерен крахмала и частиц оболочек. Она преобладает над жидкой фазой, в состав которой входят водорастворимые вещества (caхар, соль, водорастворимые белки и др.). Кроме того, основная часть жидкой фазы пшеничного теста связана набухшими белками. Газообразная фаза представлена пузырьками воздуха, захваченными тестом при замесе. В ржаном тесте отсутствует клейковинный каркас, значительная часть белков (до 97 %) неограниченно набухает, превращаясь в жидкую фазу, в состав которой входят также слизи и большое количество декстринов, сахаров и других веществ. Значительное содержание декстринов и сахаров в ржаном тесте связано с тем, что крахмал ржи очень легко (за счет высокой атакуемости) и интенсивно расщепляется под действием ферментов, так как в ржаной муке нормального качества присутствуют α- и β-амилазы в отличие от пшеничной муки нормального качества, в которой находится только β-амилаза. Твердая фаза ржаного теста состоит из небольшого количества ограниченно набухающих белков (2...3 %), крахмала и частиц отрубей.

Структурно-механические свойства ржаного теста во многом зависят от его кислотности: ее повышение до определенных пределов (до 10...12° по сравнению с конечной кислотностью пшеничного теста 7°) увеличивает долю твердой фазы, улучшает его структурно-механические свойства, делает тесто менее вязким за счет медленного разложения крахмала и снижения образования декстринов, придающих тесту липкие свойства.

Брожение теста охватывает период времени с момента его замеса до деления на куски. Цель брожения разрыхление теста, придание ему определенных структурно-механических свойств, необходимых для последующих операций, а также накопление веществ, обусловливающих вкус и аромат хлеба, его окраску.

Комплекс процессов, одновременно протекающих на стадии брожения и взаимно влияющих друг на друга, объединяют под общим понятием созревание теста. Созревание включает в себя микробиологические (спиртовое и молочнокислое брожение), коллоидные, физические и биохимические процессы.

Спиртовое брожение вызывается дрожжами, в результате которого сахара превращаются в спирт и диоксид углерода. Дрожжи сбраживают сначала глюкозу и фруктозу, а затем сахарозу и мальтозу, которые предварительно превращаются в моносахариды. Источником сахаров являются собственные сахара зерна, перешедшие в муку, но главную массу составляет мальтоза, образовавшаяся в тесте при расщеплении крахмала. Скорость брожения зависит от температуры, кислотности среды, качества дрожжей и ускоряется при увеличении количества дрожжей и повышении их активности, при достаточном содержании сбраживаемых сахаров, аминокислот, фосфорнокислых солей. Повышенное содержание соли, сахара, жира тормозит газообразование в тесте. Брожение ускоряется при добавлении в тесто амилолитических ферментных препаратов.

Молочнокислое брожение вызывается молочнокислыми бактериями, которые попадают в тесто из воздуха с мукой и расщепляют глюкозу до молочной кислоты. Существует два вида молочнокислых бактерий: гомоферментативные, образующие молочную кислоту, и гетероферментативные, которые наряду с молочной кислотой вырабатывают другие кислоты (уксусную, янтарную, лимонную и пр.). При снижении влажности и температуры теста гетероферментативные  молочнокислые  бактерии развиваются с большей скоростью, в результате резко возрастает кислотность теста и ухудшается вкус хлеба. В пшеничном тесте преобладает спиртовое, а в ржаном молочнокислое брожение. В результате нарастания кислотности ускоряется набухание белков, замедляется разложение крахмала до декстринов и мальтозы, что крайне важно при переработке пшеничной муки из проросшего зерна и ржаной муки, так как позволяет получить тесто с оптимальными структурно-механическими свойствами. Поэтому кислотность теста является признаком его созревания, а кислотность хлеба один из показателей его качества, включенный в стандарт.

Коллоидные процессы, начавшиеся на стадии замеса, продолжаются в процессе брожения. В зависимости от свойств муки возможно ограниченное и неограниченное набухание белков. При ограниченном набухании белки только увеличиваются в размерах, а при неограниченном меняется форма белковой молекулы. У муки с сильной клейковиной почти до конца брожения происходит ограниченное набухание, при этом свойства теста улучшаются. У муки со слабой клейковиной наблюдается неограниченное набухание и тесто разжижается, поэтому продолжительность  брожения  теста  из такой  муки  должна  быть сокращена.

В результате физических процессов повышается температура теста на 1...2 °С и происходит увеличение его объема за счет насыщения диоксидом углерода.

Биохимические процессы, протекающие  в тесте, одни  из важнейших, так как от них зависят и микробиологические, и коллоидные, и физические превращения. Суть биохимических, процессов состоит в том, что под действием ферментов муки, дрожжей и микроорганизмов происходит расщепление составных компонентов муки, прежде всего белков и крахмала. При  этом желательна определенная степень протеолиза, так как она ведет к получению достаточно упругого и эластичного теста, обладающего оптимальными свойствами для получения качественного хлеба. Кроме того, продукты разложения белков на стадии выпечки принимают участие в образовании цвета, вкуса и аромата хлеба. При интенсивном разложении белков, особенно в слабой муке, тесто расплывается и хлеб получается неудовлетворительного качества. При расщеплении крахмала ферментами идет образование мальтозы (5...6 % к массе муки), которая pacходуется на брожение теста и участвует в  процессе выпечки.

Интенсивность протекания всех рассмотренных процессов зависит от температуры. Оптимальная температура для спиртового брожения в тесте около 35 °С, а для молочнокислого – 35...40 °С, поэтому повышение температуры теста влечет за собой усиление нарастания кислотности. Кроме того, с повышением температуры теста в нем усиливаются биохимические процессы, ослабляется клейковина, увеличиваются ее растяжимость и расплываемость. Оптимальная температура брожения теста 26...32 °С. Повышенную температуру можно рекомендовать для приготовления теста из сильной муки, тесто из слабой муки следует готовить при более низкой температуре. Таким образом, температура является основным фактором, регулирующим ход технологического процесса приготовления теста.

Обминка теста. В процессе брожения тесто, которое готовится порционно, подвергается обминке, т. е. кратковременному повторному промесу в течение 1,5...2,5 мин. При этом происходит равномерное распределение пузырьков диоксида углерода в мacce теста, улучшается его качество, мякиш хлеба приобретает мелкую, тонкостенную и равномерную пористость.

Способы приготовления пшеничного теста. Пшеничное тесто готовят безопарным и опарным способами. Приготовление пшеничного теста без опары. При безопарном способе тесто замешивают в один прием сразу из всего сырья, предусмотренного рецептурой. Расход прессованных дрожжей 2-2,5 %, длительность брожения 2,5 ч. В процессе брожения проводят 2...3 обминки, последнюю за 30...40 мин до разделки теста. Перед последней обминкой проводят отсдобку теста (добавление жира, сахара, яиц в тесто в период брожения). Безопарным способом обычно готовят ситнички, московские калачи, московские булочки, рожки, рогалики, а также хлеб из пшеничной муки высшего и I сортов с низкой кислотностью.

Приготовление пшеничного теста на опаре состоит из двух этапов приготовления опары и теста. Для опары берут часть муки и воды и все количество дрожжей (0,5...1 %),  По консистенции опара более жидкая, чем тесто. Длительность ее брожения 3,5...4,5 ч. На готовой опаре замешивают тесто, добавляя оставшуюся часть муки, воды и остальное сырье (соль и т. д.). Тесто бродит 1...1,5 ч. В процессе брожения тесто из сортовой муки подвергают одной или двум обминкам, перед последней производят отсдобку.

Опары могут быть густыми, жидкими и большими густыми и различаются количеством муки и воды, взятых для их приготовления. Для приготовления густой опары с содержанием влаги 45...48 % берут половину муки, 2/3 воды от их общего расхода на тесто и все количество дрожжей. Жидкие опары готовят с содержанием влаги 65...75 %, содержание муки в них 20...35 % ее расхода на тесто. При этом тесто готовят уже без воды, так как вся вода находится в опаре. Жидкие опары более транспортабельны, чем густые, их легко перекачивать по трубам с помощью насосов. Они легко дозируются, процесс их приготовления сравнительно легко регулируется (в жидкие опары можно добавлять различные улучшители, охлаждать или нагревать), в них более интенсивно протекает процесс созревания.

В последнее время тесто готовят на большой густой опаре с содержанием влаги 41...44 % с сокращенной продолжительностью брожения перед разделкой. В этом случае опара должна быть сильной, зрелой, поэтому на ее замес берут 65...70 % муки. Продолжительность брожения 4...4,5 ч. Замешанное с добавлением всех компонентов тесто бродит 20...25 мин (иногда до 40 мин). Преимуществом такого варианта является сокращенный цикл приготовления теста.

Опарный способ приготовления теста более длительный, чем безопарный, но он получил большее распространение, так как в результате более глубокого протекания процессов созревания теста качество хлеба выше (лучше вкус, аромат, пористость). Он требует меньшего расхода дрожжей и обладает технологической гибкостью, позволяющей лучше учитывать хлебопекарные свойства муки.

Приготовление пшеничного теста на жидких дрожжах и заквасках. В хлебопечении применяется биохимический способ разрыхления теста с помощью прессованных дрожжей, а также с использованием жидких дрожжей и жидких заквасок, приготовляемых на хлебозаводах. Жидкие дрожжи и жидкие закваски содержат в активном состоянии как дрожжи, так и нетермофильные молочнокислые бактерии.

Питательной средой для жидких заквасок является осахаренная заварка, т. е. водно-мучная смесь, нагретая до 65...67 °С для клейстеризации крахмала. В нее добавляют белый солод в качестве источника ферментов, разлагающих крахмал с максимальным образованием сахаров. Микрофлора жидких заквасок представлена в основном гетероферментативными молочнокислыми бактериями и некоторым количеством дрожжей. Поэтому пшеничный хлеб, приготовленный на жидких заквасках, имеет высокую кислотность. Жидкие закваски применяют для получения пшеничного хлеба из обойной муки.

Питательной средой для жидких дрожжей является заквашенная заварка, т. е. осахаренная заварка, в которой при температуре 48...54 °С развиваются молочнокислые бактерии, вырабатывающие молочную кислоту. В дальнейшем полученную смесь охлаждают до 28...30 °С и используют в качестве питательной среды для размножения дрожжей. Микрофлора жидких дрожжейгомоферментативные молочнокислые бактерии и дрожжей, причем преобладают дрожжи.

Жидкие дрожжи используют для приготовления хлеба из пшеничной муки высшего, I и II сортов, так как в этом случае не происходит чрезмерного нарастания кислотности. Жидкие дрожжи и жидкие закваски (в количестве 20...35 % массы муки) можно использовать для приготовления пшеничного хлеба любым способом, как опарным, так и безопарным. Жидкие дрожжи можно использовать в смеси с прессованными дрожжами (например, 11,5% прессованных и 8...15 % жидких дрожжей).

Способы приготовления ржаного теста. Приготовление ржаного теста отличается от пшеничного, что связано с особенностями ржаной муки, содержащей в своем составе α- и β-амилазу. Действие ферментов, особенно при выпечке хлеба, влияет на качество готового продукта. В начальный период выпечки действуют оба фермента. Декстрины, образующиеся за счет действия α-амилазы, в тесте не накапливаются, так как расщепляются α-амилазой до мальтозы. В дальнейшем по мере увеличения температуры в пекарной камере β-амилаза при 82...84 °С инактивируются, а α-амилаза продолжает действовать, оставаясь активной до конца выпечки. Температура ее инактивации составляет около 130 °С, в то время как температура мякиша хлеба не превышает 95...97 °С. Следовательно, в температурном интервале от 82...84 до 95...97 °С за счет действия α-амилазы в хлебе идет процесс интенсивного накопления декстринов, придающих мякишу липкие свойства и ухудшающих качество хлеба. Для инактивации α-амилазы увеличивают кислотность теста. С этой целью ржаное тесто готовят на закваске.

Закваска порция спелого теста, приготовленная без соли и содержащая активные молочнокислые бактерии, которые могут быть как истинными, так и неистинными. Кроме молочнокислых бактерий в состав закваски входит небольшое количество дрожжей. В зависимости от содержания влаги закваски могут быть густыми, менее густыми и жидкими, содержащими соответственно 50, 60 и 70...80 % влаги.

Приготовление ржаного теста на густых заквасках. В приготовлении теста различают два цикла: разводочный и производственный. Разводочный цикл это процесс приготовления новой закваски. Он применяется, если качество уже имеющихся производственных заквасок не соответствует норме. Новую закваску готовят в три этапа, получая последовательно дрожжевую, промежуточную и исходную закваски. При этом не только увеличивается их масса, но и происходит накопление в мучной среде молочнокислых бактерий и дрожжей. Общая длительность разводочного цикла 12...14 ч, температура брожения заквасок последовательно увеличивается с 25 до 28 °С.

Для получения дрожжевой закваски готовят тесто из муки, воды, дрожжей и производственной закваски предыдущего приготовления, которая является источником молочнокислых бактерий. В результате брожения, когда кислотность достигнет определенного уровня, получают дрожжевую закваску. Ее освежают и увеличивают массу путем внесения дополнительного большего, чем на первом этапе, количества муки. Массу вновь подвергают брожению, получая промежуточную закваску, в которую опять вносят муку, и вновь сбраживают. В результате образуется исходная закваска. Источник микрофлоры в разводочном цикле размноженные в лаборатории чистые культуры дрожжей и молочнокислые бактерии.

Далее процесс идет по производственному циклу, который включает приготовление производственной закваски и получение теста. Производственную закваску получают из исходной аналогично предыдущим закваскам. Затем ее делят на три части, из которых две идут на приготовление двух порций теста, а третью порцию используют для возобновления производственной закваски, добавляя в нее муку и воду. В процессе брожения, которое длится 3,5...4 ч при температуре 28 °С, закваска восстанавливает свою кислотность и состав бродильной микрофлоры. Ее вновь делят на три части, из которых 2/3 идут для приготовления теста, а 1/3 на возобновление закваски. Производственный цикл повторяется.

При приготовлении теста в закваску добавляют муку, воду, соль и другие компоненты, брожение длится в течение 1...1,5 ч при температуре 28...30 °С до кислотности 912°. Используя производственный цикл, хлебозавод может работать месяцами.

Приготовление ржаного теста на жидких заквасках. На ряде предприятий ржаное тесто готовят на более текучих и легко транспортируемых по трубопроводам жидких заквасках.

В хлебопечении применяется несколько технологических схем приготовления ржаного теста на жидких заквасках, например Саратовская, Ивановская, универсальная. Эти схемы отличаются составом бродильной микрофлоры, технологией разводочного цикла и составами питания производственной закваски.

Саратовская схема предусматривает использование гомоферментативных молочнокислых бактерий, дрожжи в разводочном цикле не применяются, что снижает подъемную силу закваски.

По Ивановской схеме в разводочном цикле используют чистые культуры дрожжей (Ивановская раса) и гетероферментативные молочнокислые бактерии. В состав питательной среды входят осахаренная мучная заварка, вода и мука. Производственный цикл приготовления закваски и теста следующий. Через 2 ч после брожения отбирают 1/2 готовой закваски кислотностью 10...11° для приготовления теста, а к оставшейся половине прибавляют питательную среду для возобновления закваски. Температура заквасок и теста 28...30 °С.

Универсальная схема создана на основе обобщения опыта использования других схем приготовления жидких заквасок. Суть схемы состоит в приготовлении теста на жидкой закваске с применением осахаренной заварки, способствующей лучшему развитию микрофлоры.

Аппаратурные решения способов тестоведения. В отрасли используются порционный и непрерывный способы приготовления теста. Порционный применяется на предприятиях малой мощности в пекарнях, непрерывный на хлебозаводах. Непрерывно-поточный способ приготовления полуфабриката позволяет механизировать и автоматизировать производственный процесс, стабилизировать и повысить качество хлеба.

Широкое применение на хлебозаводах нашли тестоприготовительные агрегаты, в состав которых входит оборудование для дозирования ингредиентов, замеса и брожения. Различают агрегаты порционного и поточного (непрерывного) приготовления теста.

В агрегатах порционного приготовления замес опары (закваски) и теста осуществляется отдельными порциями или непрерывно, а брожения порционно. В агрегатах для поточного приготовления теста замес опары и теста и их брожение проводят в стационарных емкостях с одновременным перемещением опары или теста непрерывным потоком. К агрегатам непрерывного действия относят бункерные агрегаты И8-ХТА-6 и И8-ХТА-12 (рис. 3) для приготовления пшеничного теста на большой густой опаре, жидких опарах и безопарным способом вместимостью бункеров 6 и 12 м3. Приготовление теста осуществляется следующим образом.

Рис. 3. Бункерный тестоприготовительный агрегат И8-ХТА-6(12)

 

Для замеса опары в тестомесильную машину 1 дозатором подается мука, а из дозировочной станции 2 вода и дрожжи. Тестомесильная машина 1 представляет собой корытообразную емкость, внутри которой находятся два параллельных вала с месильными лопастями. Лопасти расположены под углом к оси вала, причем этот угол можно менять для регулирования интенсивности замеса и производительности машины. Свежезамешанная опара нагнетателем опары по тестопроводу подается на поворотный наклонный лоток 5, с которого она поступает в одну из секций стационарного бункера 3 для брожения. Через определенное время лоток периодически поворачивается на 1/6 окружности, заполняя очередную секцию бункера опарой. Полный оборот лотка соответствует времени брожения опары. Выброженная опара поступает в бункер выгрузки и нагнетателем по трубопроводу подается во вторую тестомесильную машину, в которую из соответствующих дозаторов поступают мука и все жидкие компоненты из дозировочной станции 2 для замеса теста. Освобожденная от опары секция бункера после поворота лотка вновь заполняется свежей опарой. Замешанное тесто нагнетателем по трубопроводу подается в наклонно установленную емкость 4 корытообразной формы для брожения. Выброженное тесто через патрубок поступает на разделку.

 

 

 

4. РАЗДЕЛКА ТЕСТА

 

Разделка пшеничного теста включает в себя деление теста на куски, округление, предварительную расстойку, формование тестовых заготовок и окончательную расстойку.

Разделка ржаного теста состоит из следующих этапов: деления теста на куски, формования тестовых заготовок и окончательной расстойки. Разница в разделке ржаного и пшеничного теста обусловлена различиями в их свойствах. Ржаное тесто, не имеющее клейковинного скелета, более пластично. Оно более липкое, поэтому для него необходима минимальная механическая обработка. Пшеничное тесто вследствие своей упругости и сравнительно небольшой адгезии (прилипания) должно подвергаться более интенсивной механической обработке при разделке, чем ржаное тесто. Многократная обработка пшеничного теста необходима для получения однородной структуры во всей массе куска, в результате чего хлеб получается с ровной мелкой пористостью.

Деление теста на куски. Эта операция должна обеспечить получение заданной массы хлеба. Допустимое отклонение массы отдельных кусков не должно превышать ±1,5 %. Деление осуществляется на тестоделительных машинах по объемному принципу. Существуют делительные машины, отсекающие тесто от жгута, разделяющие его на куски мерными карманами при различном нагнетании теста (шнековом, валковом, лопастном и др.) и штампующие куски теста.

Машины со шнековым нагнетанием применяются, как правило, для деления на куски теста из ржаной и пшеничной обойной муки и муки II сорта. К этой группе относятся машины «Кузбасс» различных модификаций.

В машине «Кузбасс-2М-1» (рис. 4, а) тесто поступает в приемную воронку 5 шнековой камеры 6 и шнеком 4 через угловой отвод направляется в мерный карман делительного барабана, периодически вращающегося внутри делительной головки 3. В мерном кармане расположен поршень 2, состоящий из двух частей. Сближая или удаляя половинки поршня с помощью винта и пружины, можно изменять объем мерного кармана и тем самым регулировать массу кусков теста. При нагнетании теста в мерный карман поршень 2 перемещается вниз до упора, освобождая карман для заполнения тестом. После окончания заполнения кармана делительный барабан поворачивается на 180°. При этом тесто, находящееся в камере, оказывая давление на поршень, перемещает его вниз. Поршень выталкивает кусок теста из кармана на транспортер 1, одновременно освобождая верхнюю часть кармана для последующего заполнения.

Рис. 4. Схемы тестоделительных машин: а – «Кузбасс-2М-1» со шнековым нагнетанием теста; б – РМК-60А с поршневым нагнетанием теста

 

На базе делителя «Кузбасс» созданы делительно-посадочные механизмы, осуществляющие деление теста на куски с одновременной посадкой их в формы, закрепленные на люльках расстойно-печных агрегатов. Они предназначены для деления ржаного и пшеничного теста на куски массой 0,8...1 кг.

Машины с поршневым лопастным и валковым нагнетанием теста предназначены для деления теста из пшеничной муки высшего, I и II сортов. Принцип действия машин с поршневым нагнетанием показан на примере делительной машины РМК-60А (рис. 4, б).

Тесто из воронки 1 под действием силы тяжести или питающих валков поступает в камеру делителя. При этом нагнетающий поршень 9 и заслонка 10 находятся в крайнем левом положении. Заполне­ние тестом рабочей камеры 8 происходит с помощью вращаю­щихся навстречу друг другу валков 2. При заполнении тестом рабочей камеры 8 делителя поршень 9 и заслонка 10 начинают одновременное движение вправо, причем заслонка 10, опережая движение поршня 9, прекращает поступление новых порций теста из воронки 1, а поршень 9 нагнетает тесто в мерный карман 7 делительной головки 3. В мерном кармане 7 находится поршень 4, который при нагнетании теста перемещается в глубь кармана, сжимая пружину 5. После заполнения мерного кармана 7 тестом делительная головка 3 поворачивается на угол 90°, а поршень 4 за счет энергии сжатой пружины 5 выталкивает кусок теста из кармана на ленточный транспортер 6.

Округление кусков теста. Этот процесс необходим для придания кускам теста шарообразной формы. Округление необходимо  для сглаживания неровностей на поверхности кусков и создания  пленки, которая препятствует выходу газов из теста в процессе предварительной расстойки. Наличие пленки дает равномерную пористость мякишу при выпечке. При производстве круглых подовых изделий эта операция является операцией окончательного формования кусков теста, после которой они поступают на окончательную, в данном случае единственную, расстойку. При производстве многих видов изделий (батонов, булок, плетеных изделий и др.) из пшеничной муки высшего,  I и II сортов округление является лишь первой операцией формования.

Округление ведут в тестоокруглительных машинах различных видов: с конической, цилиндрической и плоской рабочей поверхностью. В машинах первой группы (рис. 5, а), наиболее распространенных, тестовая заготовка через воронку 1 падает на дно вращающейся конической чаши, внутри которой установлен неподвижный спиральный желоб 2. Тесто увлекается внутренней поверхностью чаши, перемещается по желобу вверх, совершая при этом сложное движение, и  приобретает форму шара.

Рис. 5. Схемы тестоокруглительных машин: а – конической; б – цилиндрической; в – плоской

 

В машинах второй группы (рис. 5, б) округление oсуществляется за счет движения куска теста между цилиндрическими поверхностями двух противоположно вращающихся барабанов 1 и 2, расположенных эксцентрично один в другом. В машинах третьей группы (рис. 5, в) округление проводится плоскими движущимися лентами трех транспортеров (1...3), два из которых (1 и 2) установлены под углом к горизонтальному транспортеру 3. Ленты транспортеров движутся с различной скоростью в противоположных направлениях.

Предварительная расстойка. Это кратковременный процесс отлежки кусков теста в течение 5...8 мин в определенных условиях, в результате которого ослабляются возникшие в тесте при делении и округлении внутренние напряжения и восстанавливаются частично разрушенные отдельные звенья клейковинного структурного каркаса. Предварительная расстойка осуществляется на ленточных транспортерах или в шкафах, внутри которых устанавливают систему ленточных транспортеров или цепной люлечный конвейер. Брожение на этой стадии не играет практической роли, поэтому здесь не нужно создавать особых температурных условий.

Формование тестовых заготовок. Это процесс придания кускам теста формы, соответствующей данному сорту изделий.

При формовании тестовых заготовок цилиндрической формы из ржаного теста используют ленточные закаточные машины, в которых кусочек теста прокатывается между транспортерными лентами, установленными друг над другом, имеющими встреч­ное движение и различные скорости, или между неподвижной плитой и движущейся лентой.

Для получения тестовых заготовок пшеничного теста определенной формы тесто раскатывают в блин, затем свертывают в рулон и прокатывают, а иногда еще и удлиняют. Такая дополнительная обработка пшеничного теста улучшает пористость заготовки. Формование пшеничного теста проводится на тестозакаточных машинах (ленточных или барабанных).

Раскатывание теста в блин на машинах любых конструкций осуществляется с помощью одной или двух пар валков, вращающихся навстречу друг к другу. Завертывание теста в рулон может производиться разными способами: при помощи гибкого фартука  (рис. 6, а) с грузом 2, подвешенным над лентой транспортера 3, по которой перемещается раскатанное тесто; при помощи панцирной сетки или подвески 1 из металлических прутков (рис. 6, б), установленных над лентой транспортера 2; при помощи двух бесконечных ленточных транспортеров 1, 2 со встречным движением (рис. 6, в) и с помощью рифленого валика 2, установленного над несущим барабаном 1 (рис. 6, г). Окончательная обработка теста и придание ему формы батона проводятся между двумя транспортерными лентами или между неподвижной плитой и транспортером, как в случае формования ржаного теста.

Рис. 6. Завертывание теста в рулон при помощи: а – гибкого фартука; б – гибкой решетчатой металлической подвески; и – двух транспортерных лент со встречным движением; г – рифленого валика

 

Окончательная расстойка. Цель этого процесса брожение теста, которое необходимо для восполнения диоксида углерода, удаленного в процессе деления, округления и формования. Если выпекать хлеб без окончательной расстойки, то он получается низкого объема, с плотным, плохо разрыхленным мякишем, с разрывами и трещинами на корке. В процессе расстойки формируется структура пористости будущего изделия. Поверхность тестовых заготовок становится гладкой, эластичной и газонепроницаемой. Для ускорения брожения и предотвращения заветривания наружных слоев теста окончательная расстойка проводится в атмосфере воздуха определенной температуры (35...40 °С) и относительной влажности (75...85 %). 

Длительность расстойки колеблется от 2о 120 мин в зависимости от массы кусков, условий расстойки, свойств муки, рецептуры теста и ряда других факторов.

На современных тесторазделочных поточных линиях эта операция проводится в конвейерных шкафах окончательной расстойки и в расстойных универсальных агрегатах. Они могут быть Г-, П- или Т-образной формы. В зависимости от расположения цепного конвейера шкафы разделяются на горизонтальные и вертикальные. Внутри шкафа установлен цепной конвейер, состоящий из нескольких пар цепных звездочек, из которых одна пара является приводной, другая натяжной, а остальные направляющими, и двух цепей, перемещающихся по направляющим. К цепям с определенным шагом на шарнирах подвешены люльки. Они могут быть одно- и двухполочными. Количество  и  размеры люлек зависят от конструкции шкафа. В универсальных конвейерных шкафах количество люлек колеблется в зависимости от типа шкафа от 34 до 76. Возможный размер люлек 340x1930 мм. Подовые изделия расстаиваются на листах, которые помещаются на люльки. Последние выполнены в виде подиков. В некоторых шкафах люльки выполнены в виде рамок, обтянутых материей, и имеют несколько карманов, в результате чего в каждую люльку помещается несколько тестовых заготовок. Движение конвейера прерывистое. В момент остановки конвейера происходят загрузка и разгрузка соответствующих люлек. Для создания оптимальной температуры и влажности среды в шкаф окончательной  расстойки  вмонтирован кондиционер.

При разделке теста возможно его прилипание (адгезия) к рабочим органам тесторазделочного оборудования. Для этого оборудование посыпают мукой. В настоящее время с целью экономии муки рабочие органы соответствующих машин обдувают горячим воздухом или покрывают их поверхность материалами из полимеров, обладающими антиадгезионными свойствами. Сочетание обд­увки воздухом и покрытия поверхностей полимерными материалами позволило полностью устранить прилипание теста.

Кроме основных этапов разделка теста включает в себя вспомогательные операции (посадка тестовых заготовок в расстойный шкаф и их выгрузка, надрезание заготовок после окончательной расстойки, посадка их в печь), осуществляемые специальными механизмами.

Оборудование для разделки может быть укомплектовано в тесторазделочные линии применительно к определенному виду хлебобулочных изделий, что позволяет механизировать и автоматизировать процесс.

 

 

 

 

 

5. ВЫПЕЧКА ХЛЕБА

 

Процессы, происходящие при выпечке хлеба. Изменения, характеризующие переход тестовой заготовки в процессе выпечки хлеба, являются результатом целого комплекса процессов физических, микробиологических, коллоидных и биохимических. Однако в основе всех процессов лежат физические явления прогревание теста и вызываемый им внешний влагообмен между тестом-хлебом и паровоздушной средой пекарной камеры и внутренний тепломассообмен в тесте-хлебе.

Физические процессы. В начале выпечки тесто повышает влагу в  результате конденсации паров внутри пекарной камеры; в этот период масса куска теста-хлеба не­сколько увеличивается. После прекращения конденсации начинается испарение влаги с поверхности, которая к этому времени прогревается до 100 °С, превращаясь в сухую корку. Часть влаги при образовании корки испаряется в окружающую среду, а часть (около 50 %) переходит в мякиш, так как влага при нагревании различных продуктов перемещается от более нагретых участков (корки) к менее нагретым (мякишу). Вследствие этого содержание влаги в мякише горячего хлеба на 1,5...2,5 % выше содержания влаги в тесте. Обезвоженная корка прогревается в процессе выпечки до 160...180 °С, а температура в центре мякиша поднимается до 95...97 °С. Выше этой температуры мякиш не прогревается из-за его высокой влажности (45...50 %).

Микробиологические и биохимические  процессы. В первые минуты выпечки спиртовое брожение внутри теста ускоряется и при 35 °С достигает максимума. В дальнейшем брожение затухает и при 50 °С прекращается, так как дрожжевые клетки отмирают, а при 60 °С приостанавливается жизнедеятельность кислотообразующих бактерий. В результате остаточной деятельности микрофлоры во время выпечки в тесте-хлебе увеличивается содержание спирта, диоксида углерода и кислот, что повышает объем хлеба и улучшает его вкус. Кроме того, в первые минуты выпечки происходит тепловое расширение воздуха и газов внутри теста, что существенно влияет на увеличение его объема.

Биохимические процессы связаны с изменением состояния крахмала и белков, и при температуре 70...80 °С они прекращаются. Крахмал при выпечке клейстеризуется и энергично разлагается, причем его гидролиз в ржаном тесте идет интенсивнее, чем в пшеничном. Поэтому в ржаном тесте содержание водорастворимых веществ (декстринов и сахаров) значительно выше, чем в пшеничном. Белки при выпечке также расщепляются с образованием промежуточных продуктов. Глубина и интенсивность расщепления крахмала и белков влияют на характер протекания химических процессов, определяющих цвет корки пшеничного хлеба, его вкус и аромат. Это связано с тем, что в результате окислительно-восстановительного взаимодействия образовавшиеся сахара вступают в реакцию с продуктами разложе­ния белков и образуют темноокрашенные вещества меланоидины и ароматические соединения. Цвет же ржаного хлеба обусловлен в основном содержанием других соединений меланинов, образующихся в хлебе при участии некоторых аминокислот и ферментов.

Коллоидные процессы. Белки и крахмал при выпечке претерпевают существенные изменения. При 50...70 °С одновременно протекают процессы денатурации (свертывания) белков и клейстеризации крахмала. Белки при этом выделяют воду, поглощенную при замесе теста, уплотняются, теряют эластичность и растяжимость. Прочный каркас свернувшихся белков закрепляет форму хлеба.

Влага, выделенная белками, поглощается крахмалом. Однако этой влаги недостаточно для полной клейстеризации крахмала, и процесс протекает сравнительно медленно и заканчивается при прогреве мякиша до 95...97 °С. Клейстеризуясь, крахмальные зерна прочно связывают влагу, поэтому мякиш хлеба кажется более сухим, чем тесто.

Режимы выпечки. Определяются степенью увлажнения среды пекарной камеры, температурой в различных ее зонах и продолжительностью процесса. Режим выпечки зависит от сорта хлеба, вида и массы изделия, качества теста, свойств муки, а также от конструкции печи. Решающим фактором является масса тестовой заготовки. Продолжительность выпечки колеблется от 8...12 мин для мелкоштучных изделий до 1 ч для ржаного хлеба массой 1 кг.

Для большинства пшеничных и ржаных изделий режим выпечки включает три периода. В первый период выпечка протекает при высокой относительной влажности (до 80 %) и сравнительно низкой температуре паровоздушной среды пекарной камеры (110...120 °С) и длится 2...3 мин. За это время тестовая заготовка увеличивается в объеме, а пар, конденсируясь, улучшает состояние ее поверхности. В конце первого периода необходим интенсивный подвод теплоты для повышения температуры до 240...280 ºС. Второй период идет при высокой температуре и несколько пониженной относительной влажности газовой среды. При этом образуется корка, закрепляются объем и форма изделий. Третий период – это завершающий этап выпечки. Он характеризуется менее интенсивным подводом теплоты (180 °С), что приводит к снижению упека.

Хлебопекарные печи. Это основное технологическое оборудование, определяющее производительность хлебозавода. Они классифицируются по ряду признаков.

1. Технологический признак, определяющий ассортимент вырабатываемых изделий. По этому признаку печи бывают универсальными (для выработки широкого ассортимента хлебобулочных изделий) и специальными (для производства одного или нескольких сортов изделий).

2. Способ обогрева пекарной камеры. По этому признаку печи подразделяют на канальные, в которых теплота в пекарную камеру от продуктов сгорания топлива дымовых газов передается излучением через стенки каналов (они наиболее распространены); с пароводяным обогревом и передачей теплоты через стенки нагревательных трубок; с обогревом пекарной камеры паром высокого давления, движущимся по паропроводам; с газовым обогревом, в которых газ сжигается в пекарной камере; электрические (наиболее перспективные) и др.

3. Конструкция пекарной камеры. Печи по этому признаку делятся на тупиковые, в которых посадка тестовых заготовок и выгрузка хлеба идут с одной стороны, и сквозные (тоннельные), в которых эти операции осуществляются с разных сторон.

4. Производительность. Определяется площадью ее пода. Печи малой производительности имеют площадь пода до 10 м2, средней до 25 и большой свыше 25 м2.

5. Конструкция пода. Наиболее распространенные это печи с конвейерным подом, выполненным в виде металлической сетки (ленты), а также в виде цепных конвейеров с подвешенными к цепям люльками-подиками (наиболее перспективны сетчатые поды). Под печи может быть стационарным и выдвижным.

На хлебозаводах широко используются конвейерные тупиковые печи, в которых можно выпекать практически все виды хлебобулочных изделий. Недостатком этих печей является то, что их трудно устанавливать в автоматические поточные линии. К группе тупиковых относятся печи ФТЛ, которые используются для выработки хлебобулочных изделий широкого ассортимента.

Печь ФТЛ-2 состоит из топки 5, пекарной камеры 6, цепного конвейера 2 с люльками 7 и приводного механизма (рис. 7). Цепной конвейер 2 представляет собой две пластинчатые шарнирные цепи, натянутые на три вала передний 7, приводной задний 4 и натяжной ведомый 3. Между цепями подвешены люльки 7. Для выпечки формового хлеба люльки выполняют в виде рамок, в которые вставляют секции из форм, а для подовых изделий люльки с подиками.

Рис. 7. Хлебопекарная печь ФТЛ-2

 

Прерывистое движение конвейера позволяет в момент остановки произвести загрузку тестовых заготовок и выемку готовых изделий. Для увлажнения среды пекарной камеры 6 в первой зоне над четырьмя люльками установлена гребенка трубок. Избыток пара из пекарной камеры удаляется через канал, перекры­ваемый шибером. Горячие газы движутся по нижнему каналу, поднимаются по двум боковым и направляются в каналы верхнего газохода.

К тоннельным печам относятся печи ПХС. Печи ПХС выпускаются с канальным обогревом и сетчатым подом. Эти печи относятся к печам средней или большой производительности для выработки широкого ассортимента изделий.

Рис. 8. Хлебопекарная печь ПХС-25М

 

Печь (рис. 8) состоит из пекарной камеры 11, конвейера 2, топочных устройств и каналов для обогрева. Каркас и обшивка печи металлические, теплоизоляционное заполнение 4 из минеральной ваты. Ленточный конвейер печи изготовлен из стальной спирально-стержневой сетки, натянутой на два барабана: приводной 1 и натяжной 9. Печь оборудована двумя независимыми обогревательными системами, одна из которых обслуживает короткую посадочную зону печи, а вторая остальную часть печи. В каждую систему входят топка 7 со смесительной камерой, вентилятор рециркуляции 6, греющие 10 и транспортирующие 5 и 12 каналы, а также регулирующие устройства. Топки приспо­соблены для сжигания газа и жидкого топлива. В зоне посадки тестовых заготовок в пекарную камеру установлено пароувлажнительное устройство 8, состоящее из ряда перфорированных трубок, по которым пар поступает из котельной хлебозавода. По торцам печи установлены вытяжные зонты 3.

Для выпечки формового хлеба из ржаной, пшеничной муки и их смеси на базе печей ФТЛ-2 и некоторых других применяются расстойно-печные агрегаты, представляющие собой шкафы окончательной расстойки, объединенные с печами общим конвейером. Они позволяют механизировать процессы посадки тестовых заготовок, расстойки, выпечки и выгрузки готовой продукции.

Упек хлеба. Это потери массы теста (%) при выпечке, которые выражаются разностью между массами теста и горячего хлеба, отнесенной к массе теста. Около 95 % этих потерь приходится на влагу, а остальная часть на спирт, диоксид углерода, летучие кислоты и др. Упек составляет 6...14 % и зависит от формы хлеба: у формового хлеба он меньше, чем у подового. Для снижения упека увеличивают массу хлеба, а на завершающем этапе выпечки повышают относительную влажность воздуха и снижают температуру в пекарной камере.

 

 

6. ХРАНЕНИЕ ХЛЕБА

 

После выпечки хлеб направляют в хлебохранилище для охлаждения, а затем в экспедицию для отправки в торговую сеть. В процессе остывания происходит перераспределение влаги внутри хлеба, часть ее испаряется в окружающую среду, а влажность корки и слоев, лежащих под ней и в центре изделия, выравнива­ется. В результате влагообмена внутри изделия и с внешней средой масса хлеба уменьшается на 2...4 % по сравнению с массой горячего хлеба. Этот вид потерь называется  усушкой.

Для снижения усушки хлеб стремятся как можно быстрее охладить, для этого понижают температуру и относительную влажность воздуха хлебохранилища, уменьшают плотность укладки хлеба, обдувают хлеб воздухом температурой 20 °С, На усушку влияют также влажность мякиша, так как увеличение влажности хлеба вызывает возрастание потерь на усушку, и масса хлеба: чем больше масса хлеба, тем меньше усушка. У подового хлеба усушка меньше, чем у формового.

В хлебохранилище хлеб из печи подается ленточными транспортерами на циркуляционные столы, с которых его перекладывают на вагонетки-стеллажи. На вагонетках хлеб хранится до отправки в торговую сеть.

На большинстве существующих хлебозаводов внутризаводское транспортирование готовых изделий в хлебохранилище и экспедицию осуществляется на вагонетках с ручной укладкой продукции в лотки и перегрузкой их в специализированные фургоны автомашин.

В последнее время внедряется способ хранения хлеба на лотках в специальных контейнерах, в которых хлеб охлаждается. Затем хлеб загружается в автомашины и поступает в торговый зал магазина.

При хранении в результате физико-химических процессов, связанных с изменением структуры клейстеризованного крахмала, хлеб черствеет. Клейстеризованный во время выпечки крахмал с течением времени стареет выделяет поглощенную им влагу и переходит в прежнее состояние, свойственное для крахмала муки. Крахмальные зерна при этом уплотняются и значительно уменьшаются в объеме, между ними образуются воздушные прослойки. Полностью предотвратить черствение хлеба не удается, но известны приемы его замедления, например глубокое замораживание (при -18...-30 °С) и последующее хранение в таком виде; завертывание хлеба во влагонепроницаемую обертку; добавление молока, сыворотки, сахара, жира и других компонентов; интенсивный замес теста и длительная выпечка хлеба. Эффективным способом  сохранения  свежести  хлеба  является упаковка его в целлофан, парафинированную бумагу, лакированный целлофан и др. Перспективной считается упаковка, пропитанная сорбиновой кислотой, которая предотвращает плесневение хлеба и увеличивает срок хранения.

 

 

 

 

7. РАСЧЕТ ВЫХОДА ХЛЕБОБУЛОЧНЫХ ИЗДЕЛИЙ

 

Выход хлеба это основной технико-экономический показатель работы предприятия. Выход это количество готовой продукции, получаемой из 100 кг муки и другого сырья, вносимого в соответствии с утвержденной рецептурой. Выход хлеба (кг) обусловлен выходом теста и технологическими затратами и потерями и определяется по формуле                  

 

Gх=Gт- ( Збрраздупусмт.мехкрштпер.бр)

 

Где Gт – выход теста из 100 кг муки, кг. Технологические затраты З, кг: Збр – затраты сухого вещества при брожении полуфабрикатов (опары, теста, заквасок и др.); Зразд – затраты муки при разделке; Зуп – упек; Зус – усушка. Технологические потери П, кг:  Пм – потери муки до начала замеса полуфабрикатов; Пт.мех – механические потери теста от стадии замеса до посадки тестовых заготовок в печь; Пкр – потери в виде крошек и лома хлеба; Пшт – потери от неточности массы штучного хлеба; Ппер.бр – потери при переработке брака хлеба.

Технологические затраты неизбежны, поэтому для увеличения выхода хлеба их необходимо сводить к минимуму. Технологические потери не оправданы и вызваны несовершенством или неудовлетворительным состоянием оборудования. По возможности их необходимо также сводить к минимуму.

Потери муки Пм зависят от ее распыла при хранении и перевозке и от отходов при просеивании. Применение бестарного хранения муки в сочетании с пневматическим перемещением существенно (до 0,03 %) снижает эти потери.

Механические потери Птмех связаны с потерями тестовой крошки в виде отходов формования и распыляющейся муки через не плотности делительных машин. При замене дежей на тестоприготовительные агрегаты эти потери сокращаются с 0,06 до 0,03 %. Улучшение состояния соответствующего оборудования также снижает их величину.

Затраты сухого вещества на брожение Збр обусловлены уменьшением массы полуфабриката за счет сбраживания углеводов и потерей диоксида углерода, части спирта и летучих кислот. Также они связаны с испарением влаги при замесе, брожении и разделке теста. Суммарные затраты Збр составляют 2,5...3 %. При использовании жидких опар с сокращенным периодом брожения эти затраты снижаются до 1,5...2 %.

Затраты муки при разделке Зразд определяются расходом муки на посыпку рабочих органов тесторазделочного оборудования, для того чтобы не прилипало тесто, и могут быть частично или полностью устранены при обдувке теста воздухом и путем нанесения на рабочие поверхности водоотталкивающих (антиадгезионных) покрытий (фторопласт и др.).

Потери в виде крошки и лома при выбивке хлеба из форм, укладке его на лотки и других операциях составляют 0,02...0,03 %; потери от неточности массы штучного хлеба 0,4... 1; потери при переработке брака хлеба 0,02 %.

С целью рационального использования муки и снижения производственных потерь для каждого сорта хлеба устанавливаются плановые нормы выхода с учетом степени механизации, мощности предприятия и других показателей. Норма выхода хлеба зависит от рецептуры (при увеличении количества дополнительного сырья сахара, жира и т. д. выход хлеба возрастает), от массы хлеба, содержания влаги в муке. Чем меньше влаги в муке, тем больше выход хлеба; изменение содержания влаги на 1 % изменяет выход хлеба на 1,6...1,7 %. Норма выхода устанавливается на базисное содержание влаги муки, равное 14,5 %. Повышение выхода хлеба на 1,4...1,5 % дает экономию 1 % муки.

Обеспечение стабильного содержания влаги в тесте на уровне предельно допустимой важное условие экономии муки. Повышение влаги теста на 1 % может увеличить выход хлеба на 2...3 %, поэтому правильная дозировка воды в тесте является одним из основных мероприятии, обеспечивающих получение заданного выхода хлеба. Увеличение выхода хлеба за счет добавления чрезмерного количества воды в тесто приводит к выпуску хлеба с повышенным содержанием влаги в ущерб интересам потребителя, поэтому содержание влаги хлеба регламентируется стандартом.

 

 

 

8. ПОТОЧНО-МЕХАНИЗИРОВАННЫЕ ЛИНИИ ДЛЯ ВЫРАБОТКИ ХЛЕБОБУЛОЧНЫХ ИЗДЕЛИЙ

 

Поточно-механизированные линии включают в себя оборудование для всех производственных процессии, начиная от приготовления теста до выхода готовой продукции. Установки для бестарного хранения муки, оборудование складов дополнительного сырья и подготовка его к производству, внутризаводское транспортирование сырья, отправка готовой продукции являются в основном общими. Отличительными являются только участки приготовления теста и его разделки, включающие в себя также автоматическую посадку и пересадку тестовых заготовок с машины на машину и на под печи. Линии компонуют из расстойно-печных агрегатов с закрепленными на общем конвейере формами или на базе разделенных конвейеров для расстойки, печей и съемных форм.

Линия для производства формового хлеба (ржаного и пшеничного) включает бункерный тестоприготовительный агрегат И8-ХТА-6 (или другой марки), тестоделитель, посадчик заготовок в форму в виде ковшового элеватора (или делительно-посадочный автомат) и расстойно-печной агрегат. В хлебопекарной промышленности наибольшее распространение получили линии с конвейерными люлечными тупиковыми печами ФТЛ-2.

Линия для производства круглого подового хлеба может быть укомплектована тупиковыми или тоннельными печами. Линия с тоннельными печами включает в себя тестоприготовительный агрегат, тестоделительную и тестоокруглительную машины, карманный транспортер, конвейерный шкаф окончательной расстойки с механизмами для укладки тестовых заготовок в люльки шкафа расстойки и пересадки их на под печи и ленточный транспортер для готовой продукции.

Линия для выработки батонов состоит из тестоприготовительного бункерного агрегата; тесторазделочного агрегата, включающего в себя делитель, округлитель и закаточную машину с отбраковщиком сдвоенных кусков теста; выравнивателя шага между тестовыми заготовками; шкафа окончательной расстойки с автоматической загрузкой заготовок в люльки и пересадкой их на ленточный под печи; надрезчика тестовых заготовок; тоннельной печи и транспортера готовой продукции. Линии могут быть укомплектованы тупиковыми печами.

 

 

 

9. АССОРТИМЕНТ ХЛЕБОБУЛОЧНЫХ ИЗДЕЛИЙ

 

В ассортимент хлебобулочных изделий входят различные виды и сорта хлеба, сдобных, бараночных, сухарных изделий, а также национальные и лечебно-диетические изделия. Перечисленные группы изделий включают сотни наименований, отличающихся друг от друга по сорту, рецептуре, форме и т. д. Номенклатура группового ассортимента включает в себя хлеб ржаной из обойной, а также из обдирной и сеяной муки, хлеб пшенично-ржаной и ржано-пшеничный из обойной муки, хлеб пшеничный из муки обойной, I, II и высшего сортов различных массы и формы, булочные изделия из муки I, II и высшего сортов, сдобные изделия, сухари, хрустящие хлебцы, пироги, пирожки и пончики. В последние годы ассортимент хлебобулочных изделий значительно изменился. В соответствии с потребительским спросом возросло производство хлеба из сортовой муки, булочных и сдобных изделий и резко снизилась выработка хлеба из обойной муки. Растет производство хлебобулочных изделий с белковыми добавками (молочная сыворотка, пахта, сухое молоко и др.), увеличивается выпуск булочных изделий массой до 300 г, в том числе массой 50 и 70 г. Почти весь ассортимент выпускается  поштучно,  что  позволяет осуществлять торговлю хлебом в системе самообслуживания.

 

 

 

10. ПИЩЕВАЯ ЦЕННОСТЬ ХЛЕБОБУЛОЧНЫХ ИЗДЕЛИЙ

 

Хлеб, приготовленный из различных сортов пшеничной и ржаной муки, содержит 4050 % влаги и 6050 % сухого вещества, которое в основном представлено углеводами (около 45 %), небольшим количеством белков (89 %), а также жиров, минеральных веществ, витаминов и кислот. Пищевая ценность хлеба определяется содержанием отдельных составных частей и энергетической ценностью с учетом коэффициента усвояемости. Одну треть потребности организма в белке и значительную часть потребности в углеводах и витаминах группы В обеспечивают хлебобулочные изделия. Пищевая ценность хлеба тем выше, чем больше он удовлетворяет потребности организма в пищевых веществах и чем больше его химический состав соответствует формуле сбалансированного питания.

Энергетическая ценность хлеба зависит от содержания влаги (чем больше влаги, тем она ниже) и от количества отдельных компонентов сухого вещества. Хлеб играет существенную роль в энергетическом балансе человека, обеспечивая 1/3 потребности в энергии. При потреблении в среднем около 400 г хлеба в сутки организм обеспечивается различными соединениями: белком на 28 %, углеводами растительного происхождения, в частности, крахмалом, на 41, моно- и дисахаридами на 17,4, кальцием на 11,5, фосфором на 45,6, железом на 84,7, витаминами В1, В6, В9, РР в среднем на 3754, витамином Е на 76, витамином В3 на 25 и витамином В2 на 18,7 %.

Вместе с тем белки хлеба не являются полноценными, в них мало незаменимых аминокислот лизина и метионина, для этого в процессе производства хлеба повышают его белковую ценность путем обогащения молочными продуктами, белками бобовых и масличных культур (сои, подсолнечника) и пищевой рыбной мукой.

Минеральная и витаминная ценность хлеба зависит от сорта муки: чем больше выход муки, тем она выше. Хлеб отличается высоким содержанием зольных элементов, в первую очередь фосфором, железом и магнием. Наиболее дефицитным является кальций. Соотношение кальция и фосфора в хлебе равно 1:5,5, что намного превышает оптимальное (1:1,5) и снижает усвоение организмом хлеба. Высокоценным обогатителем в этом отношении являются молоко и молочные продукты, которые содержат кальций в наиболее легко усвояемой человеком форме.

С целью профилактики эндемического зоба целесообразно обогащать хлеб йодом, источником которого является морская капуста. Для повышения витаминной ценности хлеба, прежде всего витамина В2, проводят витаминизацию муки I и высшего сортов витаминами РР, В1 и В2.

Перспективным является использование в хлебопечении плодово-ягодных порошков, получаемых из целых яблок, яблочных и виноградных выжимок и овощных порошков из капусты, моркови и др. Порошки источники сахаросодержащего сырья, богаты клетчаткой, пектиновыми, минеральными веществами (ка­лием, кальцием, магнием, натрием) и витаминами.

Введение в рецептуру хлебобулочных изделий пшеничных за­родышевых хлопьев позволяет обогатить хлеб незаменимыми аминокислотами: лизином, метионином, триптофаном, по содержанию которых белок зародышей сходен с белком яиц, макро- и микроэлементами, в том числе кальцием, железом, калием, магнием, витаминами: токоферолом, тиамином, рибофлавином.

Использование муки из зерна нехлебопекарных и бобовых культур (рисовой, кукурузной, гороховой и фасолевой муки) позволяет получать хлеб пониженной калорийности, с увеличенным содержанием балластных веществ, макро- и микроэлементов, витаминов, а также способствует экономии основного сырья.

 

 

 

 

11. ПОКАЗАТЕЛИ КАЧЕСТВА ХЛЕБА И ХЛЕБОБУЛОЧНЫХ ИЗДЕЛИЙ

 

Качество хлеба и хлебобулочных изделий должно удовлетворять требованиям соответствующих стандартов или технических условий. Стандарт определяет требования к качеству сырья, форму и массу изделия, сорт муки, органолептические, физико-химические и микробиологические показатели качества хлеба.

Органолептические показатели качества хлеба определяют его внешний вид (форму, поверхность, окраску), состояние мякиша (пропеченность, свежесть, пористость, эластичность), вкус и запах. Форма изделий должна быть правильной с выпуклой верхней коркой, поверхность гладкой,  без трещин и подрывов, окраска равномерной, корка блестящей; мякиш должен быть пропеченным, эластичным, с хорошо развитой равномерной тонкостенной  пористостью,  вкус свойственным данному виду изделия, без посторонних привкусов.

К. числу основных физико-химических показателей относят содержание влаги мякиша, кислотность и пористость, а также содержание сахара и жира. Содержание влаги определяет физиологическую ценность хлеба, а также технико-экономические показатели работы хлебозавода. Для различных сортов пшеничного хлеба содержание влаги не должно превышать 42...48 %, для ржаного хлеба 48...51 %.

По кислотности можно судить о правильности ведения процесса приготовления хлеба, так как кислотность обусловлена наличием в хлебе продуктов, образуемых в результате спиртового и молочнокислого брожения в тесте. Кислотность для отдельных сортов хлеба из ржаной муки составляет 9...12 град, из пшеничной муки 2...6 град.

Пористость характеризует важное свойство хлеба его усвояемость организмом. Хлеб с низкой пористостью получается из невыброженного или плохо выброженного теста или из муки низкого хлебопекарного качества. Для ржаного хлеба из обойной муки пористость должна быть не менее 42 %, для пшеничного в зависимости от сорта муки и способа выпечки не менее 55…70 %.

Микробиологические требования включают в себя критерии безопасности пищевых продуктов, согласно которым содержание токсичных элементов,  микотоксинов  и пестицидов в  хлебе не должно превышать допустимые уровни.

 

 

 

12. БОЛЕЗНИ ХЛЕБА

 

Болезни хлеба вызываются развитием в нем некоторых микроорганизмов. Все виды болезней делают хлеб непригодным для употребления в пищу. Наиболее распространенными являются картофельная болезнь и плесневение хлеба. Возбудителем картофельной, или «тягучей», болезни хлеба является картофельная палочка (В. mesentericus). Эти микроорганизмы широко распространены в природе (в воздухе, почве, на растениях) и встречаются в том или ином количестве на зерне и в любой муке. За время выпечки хлеба споры сохраняют свою жизнестойкость (они погибают только при мгновенном прогревании до 130 °С или при 100 °С через 6 ч). Наиболее благоприятные условия для их прорастания: значительная влажность продукта, нейтральная реакция среды и температура выше 37 °С. Хлеб, пораженный этой болезнью, имеет слизистый мякиш, который тянется тонкими паутинообразными нитями, резкий, специфический запах и вкус, что связано с действием на него ферментов картофельной палочки. Картофельной болезнью болеет только пшеничный хлеб, особенно в жаркое время года. В ржаном хлебе вследствие его высокой кислотности болезнь не развивается. Наиболее эффективными путями предотвращения этого заболевания хлеба являются:

- повышение конечной кислотности теста путем использования заквасок, жидких дрожжей или внесения в тесто соответствующего количества молочной кислоты или части спелого теста (опары) прошлого приготовления;

- снижение температуры и максимальное усиление вентиляции в хлебохранилище для быстрого охлаждения хлеба.

Плесневение хлеба чаще всего происходит при длительном его хранении и вызывается попаданием плесени и ее спор из окружающей среды на поверхность продукта. Прорастая внутрь хлеба, плесень начинает развиваться и на мякише. Развитие и рост плесени возможны при температуре от 5 до 50 °С. Этому процессу способствует повышенная влажность воздуха, в атмосфере которого хлеб хранится. Завертывание хлеба в обычные упаковочные материалы, приводящие к быстрому нарастанию влажности корки, удачных результатов не дает, а, наоборот, способствует его плесневению. Предотвратить плесневение хлеба особенно важно для тех его видов, которые предназначены для длительного хранения. Для этой цели в тесто вносят химические консерванты, например сорбиновую кислоту и ее соли, которые подавляют развитие плесени; заворачивают хлеб в герметическую влагонепроницаемую термостойкую пленку с последующей тепловой стерилизацией прогреванием до температуры 85…90 °С в центре мякиша; заворачивают хлеб в пленку или бумагу, пропитанную сорбиновой кислотой, с последующей герметической упаковкой. Для весьма длительного хранения хлеба его подвергают расстойке и выпечке в жестяных консервных банках с закаткой их сразу же после выпечки. Для обычного хлеба предотвратить его плесневение можно путем ускоренного охлаждения в контейнерах и вагонетках путем усиленной вентиляции.

Информация о работе Технология хлеба и хлебобулочных изделий