Механика

Автор работы: Пользователь скрыл имя, 14 Ноября 2009 в 15:44, Не определен

Описание работы

Механика. Механическое движение.

Файлы: 1 файл

шпора.doc

— 891.00 Кб (Скачать файл)

 
Силы упругостиПри деформациях твердого тела его частицы (атомы, молекулы, ионы), находящиеся  в узлах кристаллической решетки, смещаются из своих положений равновесия. Этому смещению противодействуют силы взаимодействия между частицами твердого тела, удерживающие эти частицы на определенном расстоянии друг от друга. Поэтому при любом виде упругой деформации в теле возникают внутренние силы, препятствующие его деформации.                                                                      Силы, возникающие в теле при его упругой деформации и направленные против направления смещения частиц тела, вызываемого деформацией, называют силами упругости. Силы упругости действуют в любом сечении деформированного тела, а также в месте его контакта с телом, вызывающим деформации. В случае одностороннего растяжения или сжатия сила упругости направлена вдоль прямой, по которой действует внешняя сила, вызывающая деформацию тела, противоположно направлению этой силы и перпендикулярно поверхности тела. Природа упругих сил электрическая                   Силы трения. Рассматривая до сих пор силы, мы не интересовались их происхождением. Однако в механических процессах действуют различные силы: трения, упругости, тяготения. Рассмотрим силы трения.                                                         Из опыта известно, что всякое тело, движущееся по горизонтальной поверхности другого тела, при отсутствии действия на него других сил с течением времени замедляет свое движение и в конце концов останавливается. С механической точки зрения, это можно объяснить существованием некоторой силы, которая препятствует движению.                                                                                            Это сила трения – сила сопротивления, направленная противоположно относительному перемещению данного тела и приложенная по касательной к соприкасающимся поверхностям.                                                                         Сила трения покоя.                                                                            Она определяется проекцией равнодействующей силы на направление соприкасающихся поверхностей. Увеличивается пропорционально этой силе до тех пор, пока не начнется движение. График зависимости силы трения от проекции равнодействующей силы выглядит следующим образом. Внутренним трением называется трение между частями одного и того же тела, например между различными слоями жидкости или газа, скорости которых меняются от слоя к слою.

В отличие от внешнего трения здесь отсутствует трение покоя. Если тела скользят относительно друг друга и разделены прослойкой вязкой жидкости (смазки), то трение происходит в слое смазки. В таком случае говорят о гидродинамическом трении (слой смазки достаточно толстый) и граничном трении (толщина смазочной прослойки ~ 0,1 мкм и меньше).                                                                       Рассмотрим некоторые закономерности внешнего трения. Это трение обусловлено шероховатостью соприкасающихся поверхностей, в случае же очень гладких поверхностей трение обусловлено силами межмолекулярного притяжения.

Рассмотрим лежащее  на плоскости тело (рисунок), к которому приложена горизонтальная сила . Тело придет в движение лишь тогда, когда приложенная сила  будет больше силы трения . Французские физики Г. Амонтон и Ш. Кулон опытным путем установили следующий закон: сила Fтр трения скольжения пропорциональна силе N нормального давления:

Fтр = f N, где f – коэффициент трения скольжения, зависящий от свойств соприкасающихся поверхностей.

Довольно радикальным способом уменьшения силы трения является замена трения скольжения трением качения (шариковые и роликовые подшипники и т.д.). Коэффициент трения качения в десятки раз меньше коэффициента трения скольжения. Сила трения качения определяется по закону Кулона:

,- радиус катящегося тела, fк – коэффициент трения качения, имеющий размерность [fк] = L. Из этой формулы следует, что сила трения качения обратно пропорциональна радиусу катящегося тела. 

 
Постулаты специальной теории относительности.   
    
Преобразования Лоренца   Специальная теория относительности представляет собой современную физическую теорию пространства  и времени. В СТО, как и в классической механике, предполагается, что время однородно (инвариантность физических законов относительно выбора начала отсчета времени), а пространство однородно и изотропно (симметрично). Специальная теория относительности называется также релятивистской теорией, а явления, описываемые этой теорией – релятивистскими эффектами.  
     В основу СТО легло положение, согласно которому никакая энергия, никакой сигнал не могут распространяться со скоростью, превышающей скорость света в вакууме, а скорость света в вакууме постоянна и не зависит от направления распространения.  
     Это положение формулируется в виде двух постулатов А. Эйнштейна: принципа относительности и принципа постоянства скорости света.  
     Первый постулат является обобщением механического принципа относительности Галилея на любые физические процессы и утверждает, что законы физики имеют одинаковую форму (инвариантны) во всех инерциальных системах отсчета: любой процесс протекает одинаково в изолированной материальной системе, находящейся в состоянии покоя, и в такой же системе, находящейся в состоянии равномерного прямолинейного движения. Состояние покоя или движения определяется здесь относительно произвольно выбранной инерциальной системы отсчета; физически эти состояния равноправны.  
     Второй постулат утверждает: скорость света в вакууме не зависит от скорости движения источника света или наблюдателя и одинакова во всех инерциальных системах отсчета. 
    

    

  Анализ явлений  в инерциальных  системах отсчета,  проведенный А.  Эйнштейном на  базе сформулированных  им постулатов, показал,  что преобразования  Галилея несовместимы  с ними и, следовательно, должны быть заменены преобразованиями, удовлетворяющими постулатам СТО.  
     Рассмотрим две инерциальные системы отсчета: К (с координатами x, y, z) и К΄ (с координатами x΄, y΄, z΄), движущуюся относительно К вдоль оси х со скоростью =const. Пусть в начальный момент времени (t = t΄ = 0), когда начала систем координат совпадают (0 = 0΄), излучается световой импульс. Согласно второму постулату Эйнштейна скорость света в обеих системах одна и та же и равна с. Поэтому если за время t в системе К сигнал дойдет до некоторой точки А, пройдя расстояние  
    

    (5.6)      

  то в системе  К΄ координата светового импульса в момент достижения точки А будет равна  
    

     (5.7)       

  где t΄ - время прохождения светового импульса от начала координат до точки А в системе К΄. Вычитая (5.6) из (5.7), получим:    
    

      

  Так как   (система К΄ перемещается относительно К), то получается, что , т.е. отсчет времени в системах К΄ и К различен или имеет относительный характер (в классической механике считается, что время во всех инерциальных системах отсчета протекает одинаково, т.е. t = t΄).  
     А. Эйнштейн показал, что в СТО классические преобразования Галилея при переходе от одной инерциальной системы отсчета к другой заменяются преобразованиями Лоренца (1904 г.), удовлетворяющими первому и второму постулатам  
         

 Из преобразований  Лоренца вытекает, что при малых  скоростях (по сравнению со скоростью света) они переходят в преобразования Галилея. При v>c выражения для x, t, x΄ и t΄ теряют физический смысл, т.е. движение со скоростью, большей скорости света в вакууме, невозможно. Кроме того, из табл. 5.1 следует, что как пространственные, так и временные преобразования Лоренца не являются независимыми: в закон преобразования координат входит время, а в закон преобразования времени - пространственные координаты, т.е. устанавливается взаимосвязь пространства и времени. Таким образом, релятивистская теория Эйнштейна оперирует не трехмерным пространством, к которому присоединяется понятие времени, а рассматривает неразрывно связанные пространственные и временные координаты, образующие четырехмерное пространство-время.                      

34 Теплоёмкость тела (обозначается C) — физическая величина, определяющая отношение бесконечно малого количества теплоты ΔQ, полученного телом, к соответствующему приращению его температуры ΔT:

 Единица измерения теплоёмкости в системе СИДж/К.                            Удельная теплоёмкость вещества — теплоёмкость единицы массы данного вещества. Единицы измерения — Дж/(кг К).                                                    Молярная теплоёмкость вещества — теплоёмкость 1 моля данного вещества. Единицы измерения — Дж/(моль К).                                                                  Если же говорить про теплоёмкость произвольной системы, то ее уместно формулировать в терминах термодинамических потенциалов — теплоёмкость есть отношение малого приращения количества теплоты Q к малому изменению температуры T:

   Понятие теплоёмкости определено как для веществ в различных агрегатных состояниях (твёрдых тел, жидкостей, газов), так и для ансамблей частиц и квазичастиц (в физике металлов, например, говорят о теплоёмкости электронного газа). Если речь идёт не о каком-либо теле, а о некотором веществе как таковом, то различают удельную теплоёмкость — теплоёмкость единицы массы этого вещества и молярную — теплоёмкость одного моля его.                                                          Для примера, в молекулярно-кинетической теории газов показывается, что молярная теплоёмкость идеального газа с i степенями свободы при постоянном объеме равна:

R = 8.31 Дж/(моль К) — универсальная газовая постоянная.                        А при постоянном давлении                                                 Удельные теплоёмкости многих веществ приведены в справочниках обычно для процесса при постоянном давлении. К примеру, удельная теплоемкость жидкой воды при нормальных условиях — 4200 Дж/(кг К). Льда — 2100 Дж/(кг К)                 Существует несколько теорий теплоёмкости твердого тела:                                                     1)Закон Дюлонга-Пти и закон Джоуля-Коппа. Оба закона выведены из классических представлений и с определенной точностью справедливы лишь для нормальных температур (примерно от 15°C до 100°C).                                      2)Квантовая теория теплоёмкостей Эйнштейна. Первая весьма удачная попытка применения квантовых законов к описанию теплоемкости.                                                                          3)Квантовая теория теплоёмкостей Дебая. Содержит наиболее полное описание и хорошо согласуется с экспериментом.                                          Теплоёмкость системы невзаимодействующих частиц (например, газа) определяется числом степеней свободы частиц.

№21 Принцип относительности Галилея                                          Законы природы, определяющие изменение состояния движения механических систем, не зависят от того, к какой из двух инерциальных систем отсчета они относятся. Это и есть принцип относительности Галилея.                                Из преобразований Галилея и принципа относительности следует, что взаимодействия в классической физике должны передаваться с бесконечно большой скоростью  = ∞, т. к. в противном случае можно было бы одну инерциальную систему отсчета отличить от другой по характеру протекания в них физических процессов.  
Дело в том, что принцип относительности Галилея позволяет различать абсолютное и относительное движения. Это возможно лишь в рамках определенного взаимодействия в системе состоящей из двух тел. Если в изолированную (квазиизолированную) систему двух тел, взаимодействующих между собою, не вмешиваются посторонние взаимодействия, либо присутствуют взаимодействия, которыми можно пренебречь, то их движения можно считать абсолютными по отношению к центру их тяжести. Такими системами можно считать Солнце - планеты (каждая в отдельности), Земля - Луна и др. И, более того, если центр тяжести взаимодействующих тел практически совпадает с центром тяжести одного из тел, то движение второго тела можно считать абсолютным по отношению к первому. Так, за начало абсолютной системы отсчета Солнечной системы можно принять центр тяжести
Солнца и движения планет считать абсолютными. И тогда: Земля вращается вокруг Солнца, но не Солнце вокруг Земли (вспомните Дж. Бруно), камень падает на Землю, но не Земля на камень и т.д.                                                    Принцип относительности Галилея и законы Ньютона подтверждались ежечасно при рассмотрении любого движения, и господствовали в физике более 200 лет.  
       Но вот в 1865 г. появилась теория Дж. Максвелла, и уравнения Максвелла не подчинялись преобразованиям Галилея. Ее мало кто принял сразу, она не получила признания при жизни Максвелла. Но вскоре все сильно изменилось, когда в 1887 г., после открытия электромагнитных волн Герцем, были подтверждены все следствия, вытекающие из теории Максвелла, – ее признали. Появилось множество работ, развивающих теорию Максвелла.  
       Дело в том, что в теории Максвелла скорость света (скорость распространения электромагнитных волн) конечна и равна  = 299792458 м/с. (Исходя из принципа относительности Галилея скорость передачи сигнала     бесконечна и зависит от системы отсчета z=z’).                   Первые догадки о конечности распространения скорости света были высказаны еще Галилеем. Астроном Рёмер в 1676 г. пытался найти скорость света. По его приближенным расчетам она была равна  c= 214300000 м/с.  
       Нужна была экспериментальная проверка теории Максвелла. Он сам предложил идею опыта – использовать Землю в качестве движущейся системы. (Известно, что скорость движения Земли сравнительно высокая: ).       

Информация о работе Механика