Механика

Автор работы: Пользователь скрыл имя, 14 Ноября 2009 в 15:44, Не определен

Описание работы

Механика. Механическое движение.

Файлы: 1 файл

шпора.doc

— 891.00 Кб (Скачать файл)

где — кратность состояния частицы с энергией — число возможных состояний частицы с энергией . Постоянная Z находится из условия, что сумма по всем возможным значениям равна заданному полному числу частиц в системе (условие нормировки):

 В случае, когда движение частиц подчиняется классической механике, энергию можно считать состоящей из         1)кинетической энергии (кин) частицы (молекулы или атома),               2)внутренней энергии (вн) (например, энергии возбуждения электронов) и 3)потенциальной энергии (пот) во внешнем поле, зависящей от положения частицы в пространстве:

45,46. Фазовые переходы  первого и второго  рода 

Фазовый переход (фазовое превращение) в термодинамике — переход вещества из одной термодинамической фазы в другую при изменении внешних условий. С точки зрения движения системы по фазовой диаграмме при изменении её интенсивных параметров (температуры, давления и т. п.), фазовый переход происходит, когда система пересекает линию, разделяющую две фазы. Поскольку разные термодинамические фазы описываются различными уравнениями состояния, всегда можно найти величину, которая скачкообразно меняется при фазовом переходе. Поскольку разделение на термодинамические фазы — более мелкая классификация состояний, чем разделение по агрегатным состояниям вещества, то далеко не каждый фазовый переход сопровождается сменой агрегатного состояния. Однако любая смена агрегатного состояния есть фазовый переход. Наиболее часто рассматриваются фазовые переходы при изменении температуры, но при постоянном давлении (как правило равном 1 атмосфере). Именно поэтому часто употребляют термины «точка» (а не линия) фазового перехода, температура плавления и т. д. Разумеется, фазовый переход может происходить и при изменении давления, и при постоянных температуре и давлении, но при изменении концентрации компонентов (например, появление кристалликов соли в растворе, который достиг насыщения).           Классификация фазовых переходов                               При фазовом переходе первого рода скачкообразно изменяются самые главные, первичные экстенсивные параметры: удельный объём (т.е. плотность), количество запасённой внутренней энергии, концентрация компонентов и т. п. Подчеркнём: имеется в виду скачкообразное изменение этих величин при изменении температуры, давления и т. п., а не скачкообразное изменение во времени (насчёт последнего см. ниже раздел Динамика фазовых переходов). Наиболее распространённые примеры фазовых переходов первого рода: 1)плавление и затвердевание 2)кипение и конденсация 3)сублимация и десублимация                                                    При фазовом переходе второго рода плотность и внутренняя энергия не меняются, так что невооружённым глазом такой фазовый переход может быть незаметен. Скачок же испытывают их вторые производные по температуре и давлению: теплоёмкость, коэффициент теплового расширения, различные восприимчивости и т. д.               Фазовые переходы второго рода происходят в тех случаях, когда меняется симметрия строения вещества (симметрия может полностью исчезнуть или понизиться). Описание фазового перехода второго рода как следствие изменения симметрии даётся теорией Ландау. В настоящее время принято говорить не об изменении симметрии, но о появлении в точке перехода параметра порядка, равного нулю в менее упорядоченной фазе и изменяющегося от нуля (в точке перехода) до ненулевых значений в более упорядоченной фазе.              Наиболее распространённые примеры фазовых переходов второго рода:1)прохождение системы через критическую точку 2)переход парамагнетик-ферромагнетик или парамагнетик-антиферромагнетик (параметр порядканамагниченность) 3)переход металлов и сплавов в состояние сверхпроводимости (параметр порядка — плотность сверхпроводящего конденсата) 4)переход жидкого гелия в сверхтекучее состояние (п.п. — плотность сверхтекучей компоненты) 5)переход аморфных материалов в стеклообразное состояние    Современная физика исследует также системы, обладающие фазовыми переходами третьего или более высокого рода.                          В последнее время широкое распространение получило понятие квантовый фазовый переход, т.е. фазовый переход, управляемый не классическими тепловыми флуктуациями, а квантовыми, которые существуют даже при абсолютном нуле температур, где классический фазовый переход не может реализоваться вследствие теоремы Нернста. 
 
 
 
 
 
 
 
 
 

47. Строение жидкости

Жидкость занимает пpомежуточное положение между  твеpдым телом и газом. В чем ее сходство с газом? Жидкость, как и газы, изотpопна. Кpоме того, жидкость обладает текучестью. В ней, как и в газах, отсутствуют касательные напpяжения (напpяжения на сдвиг). Пожалуй, только этими свойствами и огpаничивается сходство жидкости с газом. Значительно существеннее сходство жидкости с твеpдыми телами. Жидкости тяжелы, т.е. их удельные веса сpавнимы с удельными весами твеpдых тел. Жидкости, как и твеpдые тела, плохо сжимаемы. Вблизи темпеpатуp кpисталлизации их теплоемкости и дpугие тепловые хаpактеpистики близки к соответствующим хаpактеpистикам твеpдых тел. Все это говоpит о том, что по своему стpоению жидкости должны в чем-то напоминать твеpдые тела. Теоpия должна объяснить это сходство, хотя должна находить и объяснение отличий жидкостей от твеpдых тел. В частности, она должна объяснить пpичину анизотpопии кpисталлических тел и изотpопию жидкостей. Удовлетвоpительное объяснение стpоения жидкостей пpедложил советский физик Я.Фpенкель. Согласно теоpии Фpенкеля жидкости имеют так называемое квазикpисталлическое стpоение. Кpисталлическое стpоение хаpактеpизуется пpавильным pасположением атомов в пpостpанстве. Оказывается, в жидкостях тоже наблюдается до известной степени пpавильное pасположение атомов, но лишь в малых областях. В малой области наблюдается пеpиодическое pасположение атомов, но по меpе увеличения pассматpиваемой области в жидкости пpавильное, пеpиодическое pасположение атомов теpяется и на больших ее участках полностью исчезает. Пpинято говоpить, что в твеpдых телах имеет место "дальний поpядок" в pасположении атомов (пpавильная кpисталлическая стpуктуpа в больших областях пpостpанства, охватывающих очень большое число атомов), в жидкостях же - "ближний поpядок". Жидкость как бы pазбивается на мелкие ячейки, в пpеделах котоpых и наблюдается кpисталлическое, пpавильное стpоение. Четких гpаниц между ячейками не существует, гpаницы pазмыты. Такое стpоение жидкостей и называется квазикpисталлическим. 
        Хаpактеp теплового движения атомов в жидкостях также напоминает движение атомов в твеpдых телах. В твеpдом теле атомы совеpшают колебательное движение около узлов кpисталлической pешетки. В жидкостях имеет место до известной степени аналогичная каpтина. Здесь атомы тоже совеpшают колебательное движение возле узлов квазикpисталлической ячейки, но в отличие от атомов твеpдого тела они вpемя от вpемени пеpескакивают от одного узла к дpугому. В pезультате движение атомов будет весьма сложным: оно колебательное, но вместе с тем центp колебаний вpемя от вpемени пеpемещается в пpостpанстве. Такое движение атомов можно уподобить движению "кочевника". Атомы не пpивязаны к одному месту, они "кочуют", но на каждом месте задеpживаются на опpеделенное, очень коpоткое вpемя, пpи этом совеpшая беспоpядочные колебания. Можно ввести пpедставление о "вpемени оседлой жизни" атома. Между пpочим, в твеpдых телах атомы тоже вpемя от вpемени кочуют, но в отличие от атомов в жидкостях их "сpеднее вpемя оседлой жизни" очень велико. Из-за малых значений "сpеднего вpемени оседлой жизни" атомов в жидкостях отсутствуют касательные напpяжения (напpяжения сдвига). Если в твеpдом теле касательное усилие действует длительное вpемя, то в нем тоже наблюдается некотоpая "текучесть". Наобоpот, если в жидкости касательная нагpузка действует очень коpоткое вpемя, то жидкость по отношению к таким нагpузкам "упpуга", т.е. обнаpуживает сопpотивление дефоpмации на сдвиг. 
        Таким обpазом, пpедставления о "ближнем поpядке" в pасположении атомов и о "кочевом" движении атомов пpиближают теоpию жидкого состояния тела к теоpии твеpдого, кpисталлического состояния.
 
 

№8

Динамика   вращательного   движения   материальной точки -

никаких особенностей не имеет. Как обычно, центральное соотношение - это второй  закон Ньютона для движущегося (по окружности) тела. Следует, конечно, помнить, что при вращательном движении векторное равенство, выращающее этот закон

Fi =ma,

почти всегда следует  спроектировать на радиальное (нормальное) и на касательное (тангенциальное) направления:

                                                           

Fn=man                                                    (*)

                                                           

Ft=mat                                                     (**)

При этом аn =v2/R - здесь v - скорость тела в данный момент времени, а R - радиус вращения. Нормальное ускорение отвечает за изменение скорости только по направлению.

      Иногда  аn = v2/R называют центростремительным ускорением. Происхождение такого названия понятно: это ускорение всегда направлено к центру вращения. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

№3 Движение точки по окружности

Движение точки  по окружности может быть очень сложным (рис. 17).

Рассмотрим подробно движение точки по окружности, при котором v = const. Такое движение называется равномерным движением по окружности. Естественно, вектор скорости не может быть неизменным (v не равно const), так как направление скорости постоянно меняется.

Время, за которое  траектория точки опишет окружность, называется периодом обращения точки (Т). Число оборотов точки в одну секунду называется частотой обращения (v). Период обращения можно найти по формуле: T=1/v

Естественно, перемещение точки  за один оборот будет равно нулю. Однако пройденный путь будет равен  2ПиR, а при числе оборотов п путь будет равен 2ПиRn или 2ПиRt/T, где t - время движения.

Ускорение при  равномерном движении точки по окружности направлено к ее центру и численно равно а = v2/R.

Это ускорение  называется центростремительным (или  нормальным). Вывод этого равенства  может быть следующим. Приведем векторы  скорости к одной точке хотя бы за - Т (можно и за Т/2 или Т) (рис. 18).

Тогда сумма изменений векторов скоростей за малые промежутки времени  будет равна длине дуги АВ, которая равна модулю |v2 - v1| за время t = 1/4*Т.

Определим длину  дуги. Поскольку радиусом для дуги будет модуль вектора v1=v2=v, то длина дуги l может быть вычислена как длина четверти окружности с радиусом v:

 После сокращения получим:    Если же движение равнопеременное, то v Ф const, тогда рассматривают другую составляющую ускорения, обеспечивающую изменение модуля скорости. Это ускорение называется тангенциальным: Тангенциальное ускорение направлено по касательной к траектории, оно может совпадать по направлению со скоростью (движение равноускоренное) или быть противоположно направленным (движение равнозамедленное).

Рассмотрим движение материальной точки по окружности с постоянной по величине со скоростью. В этом случае, называемое равномерным движением по окружности , касательная составляющая ускорения отсутствует (ak=0) и ускорение совпадает со своей центростремительной составляющей. За малый промежуток времени ^tточка прошла путь ^S, а радиус-вектор движущейся точки повернулся на малый угол

По величине скорость постоянна и угол ^AOB и ^BCD подобны, поэтому (48) и (49). Тогда, (50) или учитывая, что v и R постоянны и a=an (51),получим (52). При стремление , , поэтому (53). Следовательно, (54). 
Равномерное движение материальной точки по окружности характеризуются с угловым скоростям . Она определяется с отношению угла поворота к промежутку времени , за который этот поворот произошел: (55).

Единица измерения  в СИ [рад/c]. Линейная и угловая скорость связана с соотношением: (56). Равномерное движение по окружности описывается периодической функцией:f=(f+T) (57). Здесь наименьшее время повторения Т называется периодом данного процесса. В нашем случае Т-время одного полного обращения. Если за время t сделано N полных оборотов, то время одного оборота в N раз меньше t:T=t/N (58). Для характеристики такого движения вводится число полных оборотов за единицу времени v (частота вращения). Очевидно, что Т и v - величины взаимно обратные: T=t/N (59). Единица измерения частоты в СИ [Гц]. При неравномерном движении материальной точки по окружности вместе с линейной скорости изменяется угловая. Поэтому вводится понятие углового ускорения. Средним угловым ускорением называется отношение изменения угловой скорости к промежутку времени , за который это изменение произошло: (60). При равнопеременном движении материальной точки по окружности и . Поэтому угловая скорость и угла поворота радиуса определяется уравнением: (61)где - начальная угловая скорость движения материальной точки.

Равномерное движение материальной точки по окружности - движение материальной точки по окружности, при котором модуль ее скорости не меняется. При таком движении материальная точка обладает центростремительным ускорением.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

№2 Характеристики движения материальной точки                             Механическое движение материальной точки.

Простейшей формой движения материи является механическое движение, которое состоит в перемещении тел или их частей друг относительно друга.        Основные характеристики движения.

Положение материальной точки М в Декартовой системе  координат определяется тремя координатами (x, y, z) (рис.1) Иначе положение точки  может быть задано радиус - вектором r, проведенным из начала отсчета координат 0 до точки М. При своем движение точка М описывает кривую, которая называется траекторией движения. В зависимости от Участок траектории, пройденный точкой за время t, называется длиной пути S. формы траектории движения бывают прямолинейными и криволинейными. 
Пройденный путь S связан с временем движения функциональной зависимостью S=f(t)(1), которая является уравнением движения.

Простейшими видами механического движения тела, являются поступательное и вращательное движения. При этом любая прямая, соединяющая две произвольные точки тела, перемещается, оставаясь параллельной самой себе. Поступательно движется, например, поршень в цилиндре двигателя внутреннего сгорания.

При вращательном движении тела его точки описывают окружности, расположенные в параллельных плоскостях. Центры всех окружностей лежат при этом на одной прямой, перпендикулярной к плоскостям окружностей и называемой осью вращения.

Простейшим случаем  механического движения является движение точки по прямой, при котором она за равные интервалы времени проходит равные отрезки пути. При равномерном движении скорость точки, т.е. величина, равная отношению пройденного пути S к соответствующему промежутку времени t:V=S/t (2)не изменяется со временем(V=const). При неравномерном движении скорость изменяется от одной точки траектории к другой. Для оценки неравномерного движения вводится понятие средней скорости. Для этого берется отношение всего пути s ко времени t, в течение которого он пройден: Vср=S/t(3). 
Следовательно, средняя скорость неравномерного движения равна такой скорости равномерного движения при которое тело проходит такой же путь S и за то же время t , как и при заданном движении.

Информация о работе Механика