Автор работы: Пользователь скрыл имя, 22 Ноября 2010 в 19:54, Не определен
лекции
∆1 = α2 >0, если выполняется первое условие;
α2 | α0 |
α3 | α1 |
∆2=
∆3 = (-1)3+3 α0 ∆2>0 всегда, если
α2>0 и выполняется первое условие.
Для того, чтобы система третьего порядка была устойчива, необходимо и достаточно, чтобы все коэффициенты ее характеристического уравнения имели одинаковые знаки, а произведение внутренних коэффициентов было больше произведения крайних.
Но может оказаться, что D2<0, тогда система неустойчива, и ее необходимо скорректировать, не прибегая к структурной коррекции. Это, возможно меняя статический коэффициент передачи разомкнутой САР. Для данной системы kраз = b0, а коэффициент характеристического уравнения α0=f(kраз).
В этом случае находят критическое значение kраз, при котором система находится на границе устойчивости, т. е. ∆2=0.
∆2= α2 α1 - α3 α0 кр=0
α0 кр= α2 α1/α3
kраз кр (для данной системы)= α0 кр - 1
Выбирают kраз ск < kраз кр и α0 ск = 1+ kраз ск
∆2 скор. сист. α2 α1 - α3 α0 ск >0, т. е. скорректированная система устойчива.
Частотные критерии устойчивости позволяют судить об устойчивости систем автоматического управления по виду их частотных характеристик.
Пусть характеристическое уравнение системы имеет вид:
Заменив в Н(р) оператор р на оператор jω, получим вектор Н(jω)
Пусть p1, p2,......, pn - корни характеристического уравнения. Тогда в соответствии с теоремой Безу характеристическое уравнение (1) можно переписать в виде:
Н(jω)
Величина (jω-pj) геометрически изображается векторами в комплексной плоскости, а Н(jω) представляет собой вектор, равный произведению элементарных векторов (jω-pi), модуль этого вектора равен произведению модулей элементарных векторов, а фаза – сумма фаз элементарных векторов.
Условимся считать вращение против часовой стрелки положительным, тогда при изменении ω от 0 до ∞ каждый элементарный вектор повернется на некоторый угол.
Пусть p1 - отрицательный действительный корень (“левый”, т. е. слева от мнимой оси), равный “ -α 1”. При изменении ω от 0 до ∞
arg(jω- p1)
т.
е. каждый “левый” действительный
корень характеристического уравнения
поворачивает вектор характеристического
уравнения в комплексной
Если p2 - положительный действительный корень (“правый”), равный “+α2”,то при изменении ω от 0 до ∞
arg(jω-
p2)
т. е. каждый “правый” действительный корень характеристического уравнения поворачивает вектор характеристического уравнения в комплексной плоскости при изменении ω от 0 до ∞ на угол в отрицательном направлении.
Если p3,4 - корени комплексно-сопряженные
с отрицательной действительной частью,
равные –α3 ± jβ3, то
при изменении ω от 0 до ∞
arg(jω- p3) (jω- p4)
т. е. пара комплексно-сопряженных корней с отрицательной действительной частью поворачивает вектор характеристического уравнения в комплексной плоскости при изменении ω от 0 до ∞ на угол +2(π/2).
Если p5,6 - комплексно-сопряженные корни с положительной вещественной частью, равные +α4 ± jβ4, то при изменении ω от 0 до ∞
arg(jω- p5) (jω- p6)
т.е. пара комплексно-сопряжённых корней с положительной действительной частью поворачивает вектор характеристического уравнения в комплексной плоскости при изменении ω от 0 до ∞ на угол 2π⁄2 в отрицательном направлении.
Анализируя выше изложенные случаи, можно сделать вывод:
Если система устойчива - все корни левые, и каждый даёт поворот на +π⁄2. Произведение векторов (jω-pi)- тоже вектор. При изменении ω от 0 до ∞ его конец описывает кривую, называемую годографом Михайлова.
Следовательно,
если все корни левые, угол поворота
вектора характеристического
Таким образом, критерий Михайлова формулируется так:
САР устойчива, если при изменении ω от 0 до ∞ годограф Михайлова проходит последовательно n квадрантов, не обращаясь в 0, или САР устойчива, если при изменении ω от 0 до ∞ вектор Михайлова поворачивается на угол nπ⁄2 в положительном направлении, где n- порядок характеристического уравнения.
Годограф устойчивых
систем
При увеличении статического коэффициента передачи разомкнутой САР, коэффициент а0 растёт и годограф смещается вправо, параллельно самому себе. При некотором а0 кр годограф проходит через начало координат. Это граница устойчивости. Очевидно а0 кр=АВ, т.е. отрезку действительной оси, отсекаемому годографом Михайлова.
Этот критерий позволяет судить об устойчивости замкнутых САР по амплитудно-фазовой характеристике разомкнутой САР.
Замкнутая САР устойчива, если устойчива разомкнутая САР и её АФЧХ не охватывает точки с координатами (-1, j0)
Пусть Wраз=N(p)/M(p), тогда К(jω)раз=N(jω)/M(jω) - выражение для АФЧХ. Построим АФЧХ разомкнутой САР.
Пусть АФЧХ проходит через точку (-1, j0). Что это значит?
Пусть на выход разомкнутой САР подан сигнал xвх=Аsinωt. При некоторой частоте ω, К(jω1)=-1=1е-jπ, т.е. амплитуда сигнала на выходе системы равна амплитуде на входе. Далее: Отрицательная обратная связь сдвигает фазу колебаний на –π, кроме того, сама система сдвигает фазу колебаний на –π, т.е. общий сдвиг равен 2π.Входные и выходные колебания в фазе. Если замкнуть теперь САР, то выходные колебания совпадут с выходными. Входные можно отключить, а в системе всё равно останутся незатухающие колебания. Следовательно, САР находится на границе устойчивости.
Пусть Коб(jω)=Aоб еjφоб
Крег(jω)=Aрег еjφрег
тогда
Краз(jω)= Коб(jω)·Крег(jω)=-1,
т.е Аоб · Арег = 1
φоб + φрег = - π
условие возникновения незатухающих колебаний
Если
же АФЧХ охватывает точку (-1, j0), то при
этом
Аоб · Арег >1
φоб + φрег = -π