Автор работы: Пользователь скрыл имя, 06 Февраля 2011 в 16:28, лабораторная работа
Лабораторная работа и ТРИ ОТЧЕТа по ней. Вариант № 37 для студентов ВЗФЭИ. 3 курс. Содержит: файл лабораторной Эксель; Файл отчета для печати с таблицами; файл отчета чистый; инструкцию.
КАФЕДРА СТАТИСТИКИ
О Т Ч Е Т
о результатах выполнения
компьютерной лабораторной работы
Автоматизированный анализ динамики социально-экономических явлений в среде MS Excel
Вариант № ____
Выполнил: ст. III курса гр._______________
____________________
ФИО
Проверил:_____________________
ФИО
Москва ………..г.
В процессе статистического изучения деятельности одного из предприятий получены данные о годовом выпуске продукции (в стоимостном выражении) за шестилетний период, а также данные о выпуске продукции по месяцам за 6-ой год.
Полученные два ряда динамики представлены на Листе 3 Рабочего файла в формате электронных таблиц процессора Excel, годовые данные – в диапазоне ячеек A6:B12, а данные за 6-ой год по месяцам - в диапазоне D6:E19.
Таблица 3.1
Исходные данные
В процессе автоматизированного анализа динамики выпуска продукции за шестилетний период необходимо решить следующие статистические задачи.
Задание 1. Расчёт и анализ показателей ряда динамики выпуска продукции за шестилетний период.
Задание 2. Прогноз показателя выпуска продукции на 7-ой год методом экстраполяции.
Задание 3. Выявление тенденции развития изучаемого явления (тренда) по данным о выпуске продукции по месяцам за 6-ой год методами скользящей средней и аналитического выравнивания.
2. Выводы по результатам выполнения лабораторной работы4
Задание 1.
Расчёт и анализ показателей ряда динамики выпуска продукции за шестилетний период.
Выполнение Задания 1 заключается в решении двух задач:
Задача 1. Расчет цепных и базисных показателей динамики: абсолютный прирост (сокращение); темп роста (снижения); темп прироста (сокращения) и абсолютное значение 1 % прироста.
Задача 2. Расчет средних показателей ряда динамики: средний уровень ряда динамики; средний абсолютный прирост; средний темп роста и средний темп прироста.
Задача 1.
Аналитические показатели рядов динамики строятся на основе сравнения двух уровней ряда. Используют два способа сравнения уровней:
1) базисный способ, при котором каждый последующий уровень сравнивается с одним и тем же уровнем, принятым за базу сравнения (то есть база сравнения – постоянная);
2) цепной способ, при котором каждый последующий уровень сравнивается с предыдущим уровнем (то есть база сравнения – переменная).
Соответственно различают:
- базисные показатели, обозначаемые надстрочным индексом б;
- цепные показатели, обозначаемые надстрочным индексом ц.
Общеупотребительные обозначения уровней ряда динамики:
yi – данный (текущий) уровень;
yi-1– предыдущий уровень;
y0 – базисный уровень;
yn – конечный уровень;
- средний уровень.
К
числу основных аналитических
показателей рядов динамики,
характеризующих изменения уровней ряда
за отдельные промежутки времени, относятся:
абсолютный прирост,
темп роста, темп прироста,
абсолютное значение
одного процента прироста, которые рассчитываются
по следующим формулам:
= уi
– уо,
,
,
Аналитические показатели годовых изменений уровней ряда приведены в табл.3.2.
Таблица 3.2
Вывод:
Как показывают данные табл. 3.2, в целом за исследуемый период объем реализации продукции повысился (снизился) на ………… млн.руб. (гр.4) или на……..%(гр.6).
Задача 2.
В табл.3.2 приведены данные, характеризующие динамику изменения уровней ряда за отдельные периоды времени. Для обобщающей оценки изменений уровней ряда за весь рассматриваемый период времени необходимо рассчитать средние показатели динамики. В анализе динамики развития явления в зависимости от вида исходного ряда динамики используются различные средние показатели динамики, характеризующие изменения ряда динамики в целом.
Средний уровень ряда динамики ( ) характеризует типичную величину уровней ряда.
Для интервального ряда динамики с равноотстоящими уровнями времени средний уровень ряда определяется как простая арифметическая средняя из уровней ряда:
где n- число уровней ряда.
Средний абсолютный прирост ( ) является обобщающей характеристикой индивидуальных абсолютных приростов и определяется как простая арифметическая средняя из цепных абсолютных приростов:
где n- число уровней ряда.
Средний темп роста ( ) – это сводная обобщающая характеристика интенсивности изменения уровней ряда, показывающая во сколько раз изменялись уровни ряда в среднем за единицу времени. Показатель может быть рассчитан по формуле
где n – число уровней ряда.
Средний темп прироста ( ) рассчитывают с использованием среднего темпа роста:
Средние показатели ряда динамики выпуска продукции представлены в табл.3.3.
Таблица 3.3
Вывод.
За исследуемый период средний объем выпуска продукции составил ………….. млн. руб. Выявлена положительная (отрицательная) динамика производства продукции: ежегодное увеличение (снижение) объема продукции составляло в среднем ……….. млн. руб. или …….%.
При среднем абсолютном приросте =………….млн. руб. отклонение по отдельным годам незначительны (значительны).
Задание 2.
Прогноз показателя выпуска продукции на 7-ой год методом экстраполяции.
Применение
метода экстраполяции основано на инерционности
развития социально-экономических
явлений и заключается в
Выполнение Задания 2 заключается в решении двух задач:
Задача 1. Прогнозирование выпуска продукции предприятием на год вперёд с использованием среднего абсолютного прироста и среднего темпа роста.
Задача 2. Прогнозирование выпуска продукции предприятием на год вперёд с использованием аналитического выравнивания ряда динамики по прямой, полиному 2-го порядка (параболе) и степенной функции.
Задача 1.
Прогнозирование уровней ряда динамики с использованием среднего абсолютного прироста и среднего темпа роста осуществляется соответственно по формулам:
где: – прогнозируемый уровень;
t – период упреждения (число лет, кварталов и т.п.);
yi – базовый для прогноза уровень;
– средний за исследуемый период абсолютный прирост (среднегодовой, среднеквартальный и т.п.);
– средний за исследуемый период темп роста (среднегодовой, среднеквартальный и т.п.).
Формула (1) применяется при относительно стабильных приростах Δyц, что с некоторой степенью приближения соответствует линейной форме зависимости , формула (2) – при достаточно стабильных темпах ростах , что с некоторой степенью приближения соответствует показательной форме зависимости .
Таблица 3.4
Прогнозируемый объем реализации продукции на 7 год (по данным шестилетнего периода) с использованием среднего абсолютного прироста и среднего темпа роста, рассчитанных в Задании 1, приведены в табл.3.4.
Вывод.
Как показывают полученные прогнозные данные, прогнозируемые объемы реализации продукции на 7 год (по данным шестилетнего периода) довольно близки (значительно отличаются) между собой: ………… и ……………млн.руб. Расхождение полученных данных объясняется тем, что в основу прогнозирования положены разные методики экстраполяции рядов динамики.
Задача 2.
Прогнозирование выпуска продукции предприятием на год вперёд методом аналитического выравнивания ряда динамики по прямой, полиному 2-го порядка (параболе) и степенной функции выполнено с использованием средств инструмента МАСТЕР ДИАГРАММ и представлено на рис. 3.1.
Рис. 3.1
Уравнения регрессии и их графики построены для 3-х видов зависимости.
Выбор наиболее адекватной трендовой модели определяется максимальным значением индекса детерминации R2: чем ближе значение R2 к единице, тем более точно регрессионная модель соответствует фактическим данным.
Вывод:
Максимальное значение индекса детерминации R2 =…………............ Следовательно, наиболее адекватное исходным данным уравнение регрессии имеет вид …………………………
Информация о работе Автоматизированный априорный анализ статистической совокупности в среде MS Excel