7.Статистическое изучение вариации социально-экономических явлений

Автор работы: Пользователь скрыл имя, 09 Февраля 2011 в 14:04, реферат

Описание работы

Вариация – это многообразие, колеблемость, изменяемость величины признака у единиц статистической совокупности. Вариация порождается комплексом условий, действующих на совокупность и ее единицы. Например, вариация доходов, получаемых гражданами, порождается различными социальными и экономическими причинами, однако если бы все граждане имели одинаковые доходы, то необходимость в статистическом исследовании отпала бы. Отсюда следует, что именно вариация и предопределяет необходимость статистики.

Файлы: 1 файл

СтатистикаНов.doc

— 908.00 Кб (Скачать файл)
      1.     Элементы прогнозирования. Интерполяция и

экстраполяция в рядах динамики

    Необходимым условием регулирования рыночных отношений является составление надежных прогнозов развития социально–экономических явлений.

      Важное место в системе методов прогнозирования занимают статистические методы. Применение прогнозирования предполагает, что закономерность развития, действующая в прошлом (внутри ряда динамики), сохранится и в прогнозируемом будущем, то есть прогноз основан на экстраполяции. Экстраполяция, проводимая в будущее, называется перспективой и в прошлое - ретроспективой. Обычно, говоря об экстраполяции рядов динамики, подразумевает чаще всего перспективную экстраполяцию.

    Применение  экстраполяции в  прогнозировании базируется на следующих предпосылках:

  • развитие исследуемого явления в целом описывается плавной кривой;
  • общая тенденция развития явления в прошлом и настоящем не претерпет серьезных изменений в будущем.

    Поэтому надежность и точность прогноза зависят  от того, насколько близкими к действительности окажутся эти предположения, а также  как точно удастся охарактеризовать выявленную в прошлом закономерность. Экстраполяцию следует рассматривать как начальную стадию построения окончательных прогнозов.

    В зависимости от того, какие принципы и какие исходные данные положены в основу прогноза, можно выделить следующие элементарные методы экстраполяции: среднего абсолютного прироста, среднего темпа роста и экстраполяция на основе выравнивания рядов по какой-либо аналитической формуле.

    Прогнозирование по среднему абсолютному приросту может быть выполнено в том случае, если есть уверенность считать общую тенденцию линейной, то есть метод основан на предположении о равномерном изменении уровня (под равномерностью понимается стабильность абсолютных приростов).

    Для нахождения интересующего нас аналитического выражения тенденции на любую дату t необходимо определить средний абсолютный прирост и последовательно прибавить его к последнему уровню ряда столько раз, на сколько периодов, экстраполируется ряд, то есть экстраполяцию можно сделать по следующей формуле: 

     (1.10.20) 

      где   - экстраполируемый уровень, (n+t) - номер этого уровня (года);

                   n - номер последнего уровня (года) исследуемого периода, за который рассчитан  ;

                    t - срок прогноза (период упреждения);

              - средний абсолютный прирост. 

    Так, по данным табл. 1.10.6, на основе исчисленного ранее уравнения  , экстраполяцией при  t=13 можно определить ожидаемое производство цемента в 2003 г., млн. т: 

 
 
 
 

    Прогнозирование по среднему темпу роста можно осуществлять в случае, когда есть основание считать, что общая тенденция ряда характеризуется показательной (экспоненциальной) кривой. Для нахождения тенденции в этом случае необходимо определить средний коэффициент роста, возведенный в степень, соответствующую периоду экстраполяции, то есть по формуле:

     (1.10.21)

    где - последний уровень ряда динамики;

              t - срок прогноза;

          - средний коэффициент роста. 

    Если  же ряду динамики свойственна иная закономерность, то данные, полученные при экстраполяции на основе среднего темпа роста, будут отличаться от данных, полученных другими способами  экстраполяции.

    Рассмотренные способы экстраполяции тренда, будучи простейшими, в то же время являются и самыми приближенными.

    Поэтому наиболее распространенным методом  прогнозирования является аналитическое выражение тренда. При этом для выхода за границы исследуемого периода достаточно продолжить значения независимой переменной времени (t).

    При таком подходе к прогнозированию предполагается, что размер уровня, характеризирующего явление, формируется под воздействием множества факторов, причем не представляется возможным выделить отдельно их влияние. В связи с этим, ход развития связывается не с какими-либо конкретными факторами, а с течением времени, то есть y=f(t). Поэтому целесообразно определение доверительных интервалов прогноза. Величина доверительного интервала определяется следующим образом:

     (1.10.22)

                          

                        где - коэффициент доверия по распределению Стьюдента;

          - остаточное среднее квадратическое отклонение от тренда, скорректированное по    числу степеней    свободы (n-m);

                                 n - число уровней ряда динамики;

                                  m - число параметров адекватной модели тренда (для уравнения прямой m=2). 
         

    Рассчитаем  прогнозируемые доверительные интервалы  производства цемента на 2003 г.

    Если  n=12 и m=2, то число степеней свободы равно 10. Тогда при доверительной вероятности, равной 0,95 (то есть при уровне значимости случайностей  =0,5), коэффициент доверия =2,306 (по таблице Стьюдента), =44719,3648 (см. табл. 1.10.6). 

    Тогда . 

    Зная  точечную оценку прогнозируемого значения производства цемента  млн. т, определяем вероятностные границы интервала:

     

    

, отсюда  

                                 . 

    Следовательно, с вероятностью 0,95, можно утверждать, что производство цемента в 2003 г. не менее чем 2082,49, но и не более  чем 2390,91 млн. т.

    При анализе рядов динамики иногда приходится прибегать к определению некоторых неизвестных уровней внутри данного ряда динамики, то есть к интерполяции.

    Как и экстраполяция, интерполяция может  производиться на основе среднего абсолютного прироста, среднего темпа роста, а также с помощью аналитического выравнивания.

    Интерполяция  также основана на том или ином предположении о тенденции изменения  уровней, но здесь уже не приходится предполагать, что тенденция, характерная  для прошлого, сохранится и в будущем. При интерполяции предполагается, что ни выявленная тенденция, ни ее характер не претерпели существенных изменений в том промежутке времени, уровень (уровни) которого нам неизвестны.

Экономические индексы

1.11.1     Понятие экономических  индексов и их  классификация

    Индексы относятся к важнейшим обобщающим показателям. «Индекс» в переводе с латинского - указатель или показатель. Он используется как понятие в математике, экономике, в метеорологии и других науках.

    В статистике индексом называют относительный показатель, который выражает соотношение величин какого-либо явления во времени, в пространстве или дает сравнение фактических данных с любым эталоном (план, прогноз, норматив и т.д.).

    Как относительная величина индекс выражается в форме коэффициента, либо в процентах или промилле. Название индекса отражает его социально-экономическое содержание, а числовое значение – интенсивность изменения или степень отклонения.

    Индексы выполняют две функции:

  • синтетическую – используется как обобщающая характеристика изменения явления;
  • аналитическую служит для изучения влияния отдельных факторов на изменение явления.

    Большинство индексов выполняет обе функции одновременно. 

    В целом индексный метод направлен на решение следующих задач:

    1) характеристика  общего изменения уровня сложного  социально-экономического явления;

    2) анализ влияния  каждого из факторов на изменение  индексируемой величины путем элиминирования воздействия прочих факторов;

    3) анализ влияния  структурных сдвигов на изменение  индексируемой величины. 

    В международной практике индексы принято обозначать символами i и I. Буквой «i» обозначаются индивидуальные (частные) индексы, буквой «I» - общие индексы. Подстрочный знак внизу справа означает период: 0 – базисный; 1 – отчетный. 

    Используются  определенные символы для обозначения  индексируемых показателей:

    p - цена;

    q - количество;

    p q – стоимость продукции или товарооборот;

    z - себестоимость;

    z q – издержки производства;

    t – трудоемкость;

    t q – затраты рабочего времени на производство продукции. 

Классификация индексов:

           1. По степени обобщения данных:

  • индивидуальные;
  • сводные (общие);

    2. По форме построения:

  • агрегатные;
  • средние: - арифметические;

                        - гармонические;

         3. По отношению ко времени:

  • динамические индексы: - цепные;

                                                  - базисные;

  • территориальные;

                  4. По виду весов:

  • индексы с переменными весами;
  • индексы с постоянными весами;

        5. В зависимости от структуры совокупности:

  • индексы переменного состава;
  • индексы постоянного состава.
 

    Простейшим показателем, используемым в индексном анализе, является индивидуальный индекс, который характеризует изменение во времени экономических величин, относящихся к одному объекту:

- индекс цены,   (1.11.1)

    где - цена товара в текущем периоде;

            - цена товара в базисном периоде;

               - индекс физического объема реализации;   (1.11.2)

                      - индекс товарооборота    (1.11.3)

Агрегатные и средние индексы

    В тех случаях, когда исследуются  не единичные объекты, а состоящие из нескольких элементов совокупности, используются сводные индексы. Исходной формой сводного индекса является агрегатная.

    Агрегатный  индекс – это сложный относительный показатель, служащий для соизмерения явления, составные части которых непосредственно несоизмеримы. 

Информация о работе 7.Статистическое изучение вариации социально-экономических явлений