Производная и её применение в алгебре, геометрии и физике

Автор работы: Пользователь скрыл имя, 17 Сентября 2010 в 12:47, Не определен

Описание работы

Реферат

Файлы: 1 файл

Производная и ее применение в алгебре, геометрии, физике.doc

— 428.50 Кб (Скачать файл)

Ответ: ν = mgR/(B0Sα)2 = 16mgR/(B0πd2α)2. 
 

Задача 6. Цепь с внешним сопротивлением R = 0,9 Ом питается от батареи из k=36 одинаковых источников, каждый из которых имеет ЭДС E=2 В и внутреннее сопротивление r0 = 0,4 Ом. Батарея включает n групп, соединенных параллельно, а в каждой из них содержится m последовательно соединенных аккумуляторов. При каких значениях m, n будет получена максимальная J во внешнем R(см. рис.).

 
 
 
 

Решение:

При последовательном соединении аккумуляторов Eгр = m*E; rгр = r0*m; 

а при параллельном соединении одинаковых rбат = r0m/n; Eбат = m*E,

По закону Ома  J = mE/(R+ r0m/n) = mEn/(nR + r0m)

Т.к. k – общее число аккумуляторов, то k = mn;

J = kE/(nR + r0m) = kE/(nR + kr0/n);

Для нахождения условия при котором J тока в цепи максимальная исследую функцию J = J(n) на экстремум взяв производную по n и приравняв ее к нулю.

J’n-(kE(R—kr0/n2))/ (nR + kr0/n)2 = 0;

             n2 = kr/R;                        .

             n = √kr/R = √3,6*0,4/0,9 = 4;

             m = k/n = 36/4 = 9;

при этом Jmax = kE/(nR + mr0) = 36*2/(4*0,9 + 9*0,4) = 10 А;

Ответ: n = 4, m = 9. 
 

Задача 7. Платформа массой М начинает двигаться вправо под действием постоянной силы F. Из неподвижного бункера на нее высыпается песок. Скорость погрузки постоянна и равна m кг/с. Пренебрегая трением, найти зависимость от времени ускорения а платформы в процессе погрузки. Определить ускорение а1 платформы в случае, если песок не насыпается на платформу, а из наполненной высыпается через отверстие в ее дне с постоянной скоростью m кг/с.

Решение.

Рассмотрим сначала  случай, когда песок насыпается на платформу

Движение системы  платформа-песок можно описать с помощью второго закона Ньютона:

dP/dt = FS

P – импульс системы платформа-песок, FS – сила, действующая на систему платформа-песок.

Если через  p обозначить импульс платформы, то можно написать:

dp/dt = F

Найдем изменение  импульса платформы за бесконечно малый  промежуток времени Dt:

Dp = (M+m(t+Dt))(u+Du) – (M+mt)u =FDt

где u – скорость платформы

Раскрыв скобки и, проведя сокращения получаем:

Dp = muDt + MDu+mDut+ mDuDt =FDt

Разделим на Dt и перейдем к пределу Dt ®0

Mdu/dt+mtdu/dt+mu=F

или

d[(M+mt)u]/dt = F

Это уравнение  можно проинтегрировать, считая начальную  скорость платформы равной нулю:

(M+mt)u = Ft

Следовательно:

u = Ft/(M+mt)

Тогда, ускорение  платформы:

a = du/dt = (F(M+mt)-Ftm)/(M+mt)2 = FM / (M+mt)2

Рассмотрим случай, когда песок высыпается из наполненной платформы.

Изменение импульса за малый промежуток времени:

Dp = (M-m(t+Dt))(u+Du) +mDtu – (M-mt)u = FDt

Слагаемое mDtu есть импульс количества песка, которое высыпалось из платформы за время Dt

Тогда:

Dp = MDu - mtDu - mDtDu = FDt

Разделим на Dt и перейдем к пределу Dt ®0

(M-mt)du/dt = F

или

a1=du/dt= F/(M-mt)

Ответ: a = FM / (M+mt)2 , a1= F/(M-mt) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

СПИСОК  ЛИТЕРАТУРЫ

 
  1. М64 И. Ф. Суворов  “Курс высшей математики для техникумов”. М.: Просвещение, 1964.
  2. М 71 В. В. Ткачук “Математика—абитуриенту”. М.: Просвещение, 1980.
  3. P60 Д. Е. Родионов, Е. М. Родионов “Стереометрия в задачах”. М.: Учебный центр “Ориентир” – “Светоч”, 1998.
  4. P60 В. А. Колесников. “Физика. Теория и методы решения конкурсных задач. Часть II”. М.: Учебный центр “Ориентир” – “Светоч”, 2000.
  5. Л77 Л. М. Лоповок “1000 проблемных задач по математике”. М.: Просвещение, 1995.
  6. М89 Д. Т. Письменный “Математика для старшеклассников. Теория\задачи”. М.: “Айрис”, “Рольф”, 1996.
  7. С 82 М. Я. Выгодский “Справочник по элементарной математике”. Спб.: Союз, 1997.
  8. В20 В. И. Васюков, И. С. Григорьян, А. Б. Зимин, В. П. Карасева “Три подсказки – и любая задача решена! Часть III”. М.: Учебный центр “Ориентир” при МГТУ им. Н. Э. Баумана, 2000.
  9. Э 61 В. А. Чуянов “Энциклопедический словарь юного физика”. М.: Педагогическа-Пресс, 1999.
  10. Б 27 А. Б. Басков, О. Б. Баскова, Н. В. Мирошин “Математика. Часть 2. Алгебра и начала анализа”. М.: МИФИ, 1997.

РЕЦЕНЗИЯ  НА РАБОТУ

Информация о работе Производная и её применение в алгебре, геометрии и физике