Производная и её применение в алгебре, геометрии и физике

Автор работы: Пользователь скрыл имя, 17 Сентября 2010 в 12:47, Не определен

Описание работы

Реферат

Файлы: 1 файл

Производная и ее применение в алгебре, геометрии, физике.doc

— 428.50 Кб (Скачать файл)

Корни трехчлена:

 

Отсюда:

у' =3(х+4/3)(х-2).

Множитель x + 4/3 отрицателен при х < - 4/3 и положителен при х > - 4/3. Множитель х - 2 отрицателен при х < 2 и положителен при х > 2. Знак произведения будет тот или иной в зависимости от расположения точки х на оси Ох относительно точек -4/3 и 2.

Точки -4/3 и 2 разделяют  всю ось на три промежутка;

1) — ∞ <x<-4/3, 2) -4/3<x<2, 3)2<x< + ∞.

Чтобы определить знак производной  в  каждом из промежутков, составим таблицу:

№ про-межутка Характеристика  промежутка Знак x+4/3 Знак x-2 Знак f ’(x) Данная

функция

1 - ∞ < x< - 4/3 + возрастает
2 -4/3 < x < 2 + убывает
3 2 < х < + ∞ + + + возрастает

Следовательно, данная функция возрастает в промежутках

- ∞ <x < -4/3 и 2 <x < + ∞ и убывает в промежутке — 4/3 < х <2.

График данной функции представлен на черт.

5°.Функция  у = х3 (черт.) имеет производную у = 3х2, которая  положительна при всяком значении х, отличном от нуля. При х = 0 производная у' = 0. Функция у = х3 возрастает в промежутке — <x<+; x= 0 есть отдельная единственная точка, в которой производная равна нулю, в ней функция возрастает. Действительно, при х = 0 х3 = 0, а при х < 0  х3 < 0 и при х > 0 х3 > 0. 
 
 

Задачи  на отыскание наибольших и наименьших значений величин 

. Требуется огородить проволочной сеткой длиной 60 м прямоугольный участок, прилегающий к стене дома ( черт.). Каковы должны быть длина и ширина участка, чтобы он имел наибольшую площадь?

Решение. Пусть  ширина участка x м, а площадь у м2, тогда:

y = (60-2x)x = 60x - 2х2

Значения x и y не могут быть отрицательными, поэтому множитель 60 - 2x > 0, а 0<x<30.

Площадь y есть функция x, определим промежутки ее возрастания и убывания:

y' = 60 - 4x.

y'>0, и функция возрастает, когда x<15; y<0, и функция убывает, когда x>15. 

Если  ширина х = 0 5 10    15    20    25    30
то  площадь y = 0   250 400    450    400    250   0
 

Кривая (черт.) поднимается  от начала 0 до точки М(х= 15), а затем начинает падать. В точке х= 15 функция имеет наибольшее значение.

Следовательно, площадь участка наибольшая (максимум), если ширина х =15м, а длина 60 — 2x = 60 -- 30=30 (м)

. Каковы должны быть размеры прямоугольной комнаты, площадь которой 36 x2, чтобы периметр ее был наименьший?

Решение. Пусть  длина равна х м, тогда ширина прямоугольника 36/x м, а периметр:

Y=2(x+36/x)=2x+72/x.

Периметр у есть функция длины x, определенная для всех положительных значений x:

0<x<+∞

Определим промежутки ее возрастания и убывания:

y’=2-72/x2=2(x2-36)/x2=2(x-6)(x+6)/x2.

Знак производной  определяется знаком разности x-6. В промежутке

0<x<6   y'<0, а в промежутке 6<x<+∞ y'>0.

Периметр убывает  в промежутке 0<x<6 и возрастает в промежутке 6<x<+∞. График (черт.) построим по таблице:

Если  х =   →0     3    4    5      6       7     8 →∞
То  у =  →∞    30   26 24,4   24   24,3     25 →∞

Следовательно, периметр прямоугольника имеет  наименьшее значение (минимум), если длина его  6 м и ширина 36/6 м = 6 м, т. е. когда он квадрат. 
 

Максимум  и минимум функции 

Задачи на отыскание  наибольших и наименьших значений величин  имеют важное значение в технике  и, как это ясно из примеров, сводятся к отысканию максимума и минимума функции.

Определение. 1. Функция f(x) имеет при х=с максимум, если ее значение при х=с больше, чем при любом другом значении х, взятом в некоторой окрестности точки х=с.

2. Функция f(x) имеет при x= с минимум, если ее значение при х=с меньше, чем при любом другом значении х, взятом в некоторой окрестности точки х=с.

Термины "максимум" и "минимум" объединяются в один общий для них термин "экстремум".

Значение аргумента, которое дает максимум (или минимум) функции, называется точкой максимума (минимума), или точкой экстремума.

Функция может иметь только максимум, например функция y = 60x— 2х2 (черт. 111), или только минимум, например   функция у = 2х+72/x (черт. 112), или иметь

максимум и  минимум, как, например, функция у = х3— — х2 — 8х+2 (черт. 108). Функция может иметь несколько максимумов и минимумов (черт. 113), причем в этом случае максимумы и минимумы чередуются. Функция может не иметь ни максимума, ни минимума. Например, функции у = х3, y = ctgx, y = ax не имеют ни максимума, ни минимума, так как при возрастании х от — ∞ до +∞ первая и третья функции возрастают, а вторая только убывает.

Максимум (минимум) функции может не быть наибольшим (наименьшим) значением ее. Так, изображенная на черт. 113 функция имеет в точке  с. значение, большее максимумов с1М1 и с3М2, а в точке с0 значение, меньшее минимума c2m1, и c4m2, минимум c4m2 больше максимума с1М1. Максимум (минимум) функции в данной точке вообще есть наибольшее (наименьшее) значение функции по сравнению с ее значениями в точках, лежащих слева и справа от точки экстремума лишь в достаточной близости к ней. 
 

Признаки  существования экстремума 

. Теорема (необходимый признак). Если в окрестности 2δ точки х=с:

1) функция f(х) дифференцируема, 2) значение х=с есть точка экстремума функции f(x), то ее производная в точке с равна нулю, m. e. f '(c) = 0.

Доказательство. Пусть для определенности х=c есть точка максимума (черт. 111). Представим значения независимого переменного х левой полуокрестности точки с в виде с — Δx:, а правой в виде с+ Δx, где 0< Δx < δ. Значение функции f(x) в точке с есть f(c), в левой полуокрестности оно равно f(с — Δx), а в правой f(c + Δx). Значения f(x) в окрестности точки с поставлены, таким образом, в зависимость от значений Δx, причем значение х = с -/+ Δx неограниченно приближается к числу с, если Δx стремится к нулю.

По определению  максимума функции:

f(c- Δx)<f(c) и f(c + Δx)<f(c).

Отсюда:

f(c-Δx)-f(c)<0 и f(c + Δx)-f(с)<0.

Левые части  неравенств выражают приращение функции  в точке х = с при изменении аргумента соответственно на — Δx и + Δx. Составив отношение приращения функции к приращению аргумента, получаем:

(f(c —Δx)—f(с))/(-Δx))>0         (1);                               (f(с + Δx)—f(с)/(+Δx))<0            (2) Оба отношения (1) и (2) имеют один и тот же предел при Δx → 0, так как по условно функция f(x) имеет в точке с определенную произвольную: 
 

Из неравенства (1) следует, что f '(с)  либо положительна, либо равна  нулю, а неравенство (2) показывает, что f '(с) не  может быть положительной. Следовательно,

f‘(c) = 0,

что и требовалось  доказать.

. Теорема (достаточный признак). Если в окрестности 2δ точки x = с:

1) функция f(x) непрерывна,

2) ее производная, f '(х), слева от точки х = с положительна, а справа отрицательна, то значение х = с есть точка максимума функции.

Доказательство. Данная функция непрерывна в точке c, поэтому число f(с) есть общий предел для f(c — Δx) и f(c+Δx) при Δx → 0 (как и в предыдущей теореме, здесь и в последующем 0 < Δx< δ): 
 

Данная функция  f(x) в левой полуокрестности точки с — возрастающая, так как ее производная слева от точки с положительна, а в правой полуокрестности — убывающая, так как ее производная справа от точки с отрицательна (черт.), и вследствие этого ее значения

f(c —Δx) и f(c+Δx)

возрастают  при стремлении Δx к нулю (по определению убывающей функции, меньшему значению аргумента отвечает большее значение функции, т. е. при x1>x2 f(x1)<f(x2)).

Другими словами, как f(c — Δx), так и f(c+Δx) приближаются к своему пределу f(с) так, что для каждого значения Δx ≠ 0:

f(c - Δx) < f(c) и f(c + Δx) < f(c).

Но в таком случае f(c) есть максимум функции f(x) в точке х = с.

. Так же можно доказать, что если в окрестности 2δ точки х = с:

1) функция f(x) непрерывна, 2) производная f '(x) слева от точки х = с отрицательна, а справа положительна, то значение х = с есть точка минимума функции (черт.).

. Как в точке максимума, так и в точке минимума производная равна нулю (1°). Обратное неверно. Функция может не иметь ни максимума, ни минимума в точке, в которой производная равна нулю.

Например, функция  у = х3 имеет в точке x =0 производную, равную нулю. Однако в точке х = 0 нет ни максимума, ни минимума, функция у = х3 при всех значениях х, в том числе и при x = 0, возрастает. Отсюда, в точке х=с функция f(x) не имеет на максимума, ни минимума, если при х = с ее производная равна нулю и имеет один и тот же знак как слева, так и справа от точки х = с.

. Определение. Значения аргумента х, при которых производная f '(х) равна нулю, называются стационарными точками.

Информация о работе Производная и её применение в алгебре, геометрии и физике