Автор работы: Пользователь скрыл имя, 17 Сентября 2010 в 12:47, Не определен
Реферат
Если LM’(x) = 0, то 8x/7+2(a/4 – 3x/(2√7))(-3/2√7) = 0,
8x/7 – 3a/4√7 + 9x/14 = 0,
25x/14 = 3a/4√7,
x = 21a/50√7. __ __
MN = (21a/50√7)*(2/√7) = 3a/25,
LN = a/4 – (3/2√7)*(21a/50√7) = 4a/25,
LM = √a2/625 + 9a2/625 = a√10/25. _
S∆MBK = a√3/2*a/5*1/2 = a√3/20 = 9√3 R2/80.
Ответ: 9√3
R2/80.
Задача 8. В сферу радиусом R вписана правильная треугольная пирамида, высота которой в 1,5 раза меньше высоты основания. Между боковой гранью пирамиды и сферой расположена правильная четырехугольная призма, одно из оснований которой (ближнее к центру сферы) лежит в плоскости боковой грани пирамиды, а вершины другого основания принадлежат сфере. Какой должна быть высота призмы, чтобы ее объем был наибольшим? Найти этот объем.
Решение. SABC – правильная треугольная пирамида (рис), вписанная в сферу радиусом R,
SO*1,5 = AD,
LMN – правильная четырехугольная призма.
Найти. Vпр = f(LM).
Пусть SO = H, тогда AD = 1,5H;
SO1 = R – радиус сферы; LM = x –высота призмы.
∆SKO1 подобен ∆SOD => O1K/OD = SO1/SD => OK1 = OD*SO1/SD.
Из ∆AO1O: R2 = AO2 + O1O2 = (2AD/3)2 + (AD*2/3 - R)2,
R2 = 4AD2/9 + 4AD2/9 –AD*R*4/3,
8AD2/9 = AD*R*4/3 => AD = 3R/2.
Отсюда OD = R/2;
AO1 = R и SO1 = R; _
SD = √R2 + R2/4 = R√5/2, _
OK1 = 2*R*R/(2R√5) = R√5/5;
O1K = R√5/5.
Из ∆O1FN => R2 = (O1K + x)2 + NF2,
NF =
√R2 –
R2/5 – 2x(√5)2/5
– x2 ,
Sосн
= 2NF2.
Vпр = Sосн*x = 2(R2 – R2/5 – 2x√5 R/5 - x2)*x;
Vпр = 2(4R2x/5 – 2x2√5 R/5 - x3);
V’пр(x) = 2(4R2/5 – 2x√5 R/5 - 3x2) = 0; _
x 1,2 = (2R√5/5 + √4R2/5 + 12R2/5)/(-3) = (2R√5/5 + 4R/√5)/(-3);
x = 2√5 R/15 _ _
Vпр.max = 2(4R2*2√5R/(5*15) – 2√5R*4R2/(45*5) - _ 40√5R3/(225*15)) = 16R3√5(1 – 1/3 – 5/45)/75 = 16√5R3/135.
Ответ: 16√5R3/135
м3 при H = 2√5R/15.
Задача 9. В конус вписан цилиндр, одно из оснований которого лежит в плоскости основания конуса, а окружность другого основания принадлежит боковой поверхности конуса. Правильная четырехугольная призма расположена так, что ее нижнее основание лежит в плоскости верхнего основания цилиндра, вершины верхнего основания принадлежат боковой поверхности конуса. Отношение длины диагонали основания призмы к ее высоте равно отношению длины диаметра цилиндра к его высоте. При какой высоте цилиндра объем призмы будет наибольшим? Найти этот объем призмы, если высота конуса – H и радиус основания – R.
Дано. ASO – конус;
SO = H;
AO = R;
CL/CM = BK/BN;
Найти. BN, чтобы
Vпр = max
Решение. BN = x, CM = h, Vпр = Sосн CM = CL2h/2.
∆CSD подобен ∆ASO: CD/AO = SD/SO;
CD/R = (H – x - h)/H;
CD = R(H – x -h)/H.
∆BSE подобен ∆ASO: BE/AO = SE/SO;
BE/R = (H - h)/H;
BE = R(H - h)/H.
Находим отношение CD/BE = (H – x - h)/(H - x).
Исходя из условия (CL/CM = BK/BN) задачи делаем вывод,
что CD/BE = h/x, т. е. (H – x - h)/(H - x) = h/x => h = (Hx – x2)/H
Тогда CD = R(H – x – (Hx – x2)/H)/H = R(H2 – Hx – Hx +x2)/H2 = R(H - x)2/H2,
CL = 2CD = 2R(H - x)2/H2.
V = 4R2(H - x)4(H - x)x/(2H*H4) = 2R2(H - x)5x/H5;
V’(x) = 2R2((H - x)5 – 5(H - x)4 x)/H5 = 0,
(H – x) – 5x = 0, x = H/6.
V = 2HR2(5H/6)5/(6H5) = 2R2H*55/66.
Ответ: при
H/6, Vmax = 2R2H*55/66.
В
физике производная
применяется в
основном для вычисления
наибольших или наименьших
значений для каких-либо
величин.
Задача 1.Потенциальная энергия U поля частицы, в котором находится другая, точно такая же частица имеет вид: U = a/r2 – b/r, где a и b — положительные постоянные, r — расстояние между частицами.
Найти:
а) значение r0 соответствующее равновесному положению частицы;
б) выяснить устойчиво ли это положение;
в) Fmax значение силы притяжения;
г) изобразить примерные
U = a/r2 – b/r; Решение:
a и b — counts; Для определения r0 соответствующего равновесному
r0 — ? положению частицы исследуем f = U(r) на экстремум.
Fmax — ? Используя связь между потенциальной энергией поля
U и F, тогда F = -dU/dr, получим F = -dU/dr = - (-2a/r3+b/r2) = 0;
при этом r = r0; 2a/r3 = b/r2 => r0 = 2a/b;
Устойчивое или неустойчивое равновесие определим по знаку второй производной:
d2U/dr02=
dF/dr0=-6a/r04
+ 2b/r03
= -6a/(2a/b)4+2b/(2a/b)3=(-b4/8a
равновесие устойчивое.
Для определения Fmax притяжения исследую на экстремумы функцию:
F = 2a/r3— b/r2;
dF/dr = -6a/r4 + 2b/ r3 = 0;
при r = r1 = 3a/b;
подставляя, получу Fmax = 2a/r31 — b/r31 = - b3/27a2;
U(r) = 0; при r = a/b; U(r)min при r = 2, a/b = r0;
F = 0;
F(r)max при r = r1
= 3a/b;
Задача 2. Три резистора сопротивлениями R1, R2, R3 соединены параллельно. Сопротивление R1 в 9 раз больше сопротивления R2. Если все три резистора соединить последовательно, то сопротивление цепи равно R.
Определить сопротивления
резисторов при которых сопротивление
исходной цепи будет наибольшим.
R1 = 9 R2 Решение:
При параллельном соединении резисторов эквивалентное
R1, R2, R3 сопротивление по формуле:
1/Rэкв = 1/R1+1/R2+1/R3;
Rэкв max— ? выражу R3 через R2:
R3 = R— R1—R2=R—10R2;
тогда 1/Rэкв = (10R—91R2)/(9R2(R—10R2));
Задача сведена
к определению наименьшего
Возьмем производную от f(1/Rэкв) по R2 и преобразуем ее:
(1/Rэкв)’ = -910(R2—R/7)(R2—R/13)/(9R22 (R-10R2)2);
В интересующем нас интервале только одна точка R2 = R/13 в которой эта производная меняет знак с “—” слева на ”+”справа. Поэтому в точке R2 = R/13 достигается минимум функции 1/Rэкв и максимум функции Rэкв, при этом
R1 = 9R/13; R2 = 1R/13; R3 = 3R/13;
Rэкв max
= 9R/169;
Задача 4. В магнитном поле с большой высоты падает кольцо, имеющее диаметр d и сопротивление R. Плоскость кольца все время горизонтальна. Найти установившуюся скорость падения кольца, если вертикальная составляющая индукции магнитного поля изменяется с высотой H по закону B = B0(1 + αH), где α = const (черт.).
Решение. Пусть n – нормаль к плоскости кольца, тогда магнитный поток, созданный вертикальной составляющей магнитного поля.,
Ф = BS = B0(1 + αH)S, где S = πd2/4 – площадь контура.
ЭДС индукции, возникающая в кольце,
E = - Ф’(t) = - (B0(1 + αH)S)’ = - B0SαH’(t).
Производная H’(t) = νн – это проекция скорости кольца на ось H. Таким образом,
Ei = - B0Sα( - νн).
Так как скорость кольца направлена против оси H, то νн = - ν, где ν – модуль скорости кольца и Ei = B0Sαν.
По кольцу протекает индукционный ток
J = Ei /R = B0Sαν/R.
В результате в кольце за промежуток времени Δt выделяется количество теплоты
Q = J2RΔt.
На высоте H1 кольцо обладает механической энергией
W1 = mgH1 + mν2/2,
на высоте H2
W2 = mgH2 = mgH2 + mν2/2
(ν = const, т. е. скорость кольца не меняется). По закону сохранения энергии
W1 = W2 + Q => mgH1 = mgH2 + J2RΔt => mg(H1 - H2) = (B0Sαν/R)2RΔt =>
mg(H1 - H2) = (B0Sαν)2Δt/R (*)
Разность (H1 - H2) есть расстояние, пройденное кольцом при равномерном движении, поэтому H1 - H2 = νΔt, и уравнение (*) примет вид:
mgνΔt = (B0Sαν)2Δt/R => mg = (B0Sα)2ν/R =>
ν = mgR/(B0Sα)2 = 16mgR/(B0πd2α)2.
Информация о работе Производная и её применение в алгебре, геометрии и физике