Производная и её применение в алгебре, геометрии и физике

Автор работы: Пользователь скрыл имя, 17 Сентября 2010 в 12:47, Не определен

Описание работы

Реферат

Файлы: 1 файл

Производная и ее применение в алгебре, геометрии, физике.doc

— 428.50 Кб (Скачать файл)

Если LM’(x) = 0, то 8x/7+2(a/4 – 3x/(2√7))(-3/2√7) = 0,

8x/7 – 3a/4√7  + 9x/14 = 0,

25x/14 = 3a/4√7, 

x = 21a/50√7.  __        __

MN = (21a/50√7)*(2/√7) = 3a/25,

LN = a/4 – (3/2√7)*(21a/50√7) = 4a/25,

LM = √a2/625 + 9a2/625 = a10/25.   _

S∆MBK = a3/2*a/5*1/2 = a√3/20 = 9√3 R2/80.

Ответ: 9√3 R2/80. 
 

Задача  8. В сферу радиусом R вписана правильная треугольная пирамида, высота которой в 1,5 раза меньше высоты основания. Между боковой гранью пирамиды и сферой расположена правильная четырехугольная призма, одно из оснований которой (ближнее к центру сферы) лежит в плоскости боковой грани пирамиды, а вершины другого основания принадлежат сфере. Какой должна быть высота призмы, чтобы ее объем был наибольшим? Найти этот объем.

Решение. SABC – правильная треугольная пирамида (рис), вписанная в сферу радиусом R,

SO*1,5 = AD,

LMN – правильная четырехугольная призма.

Найти. Vпр = f(LM).

Пусть SO = H, тогда AD = 1,5H;

SO1 = R – радиус сферы; LM = x –высота призмы.

∆SKO1 подобен ∆SOD => O1K/OD = SO1/SD => OK1 = OD*SO1/SD.

Из ∆AO1O: R2 = AO2 + O1O2 = (2AD/3)2 + (AD*2/3 - R)2,

R2 = 4AD2/9 + 4AD2/9 –AD*R*4/3,

8AD2/9 = AD*R*4/3 => AD = 3R/2.

Отсюда OD = R/2;

AO1 = R и SO1 = R;    _

SD = √R2 + R2/4 = R√5/2,  _

OK1 = 2*R*R/(2R√5) = R√5/5;

O1K = R√5/5.

Из ∆O1FN => R2 = (O1K + x)2 + NF2,

NF = √R2 – R2/5 – 2x(√5)2/5 – x2 , 

Sосн = 2NF2.                                _

Vпр = Sосн*x = 2(R2R2/5 – 2x√5 R/5 - x2)*x;

Vпр = 2(4R2x/5 – 2x2√5 R/5 - x3);

V’пр(x) = 2(4R2/5 – 2x√5 R/5 - 3x2) = 0;           _

x 1,2 = (2R√5/5 + √4R2/5 + 12R2/5)/(-3) = (2R√5/5 + 4R/√5)/(-3);

x = 2√5 R/15         _                      _

Vпр.max = 2(4R2*2√5R/(5*15) – 2√5R*4R2/(45*5) -      _ 40√5R3/(225*15)) = 16R3√5(1 – 1/3 5/45)/75 = 16√5R3/135.

Ответ: 16√5R3/135 м3 при H = 2√5R/15. 
 

Задача  9. В конус вписан цилиндр, одно из оснований которого лежит в плоскости основания конуса, а окружность другого основания принадлежит боковой поверхности конуса. Правильная четырехугольная призма расположена так, что ее нижнее основание лежит в плоскости верхнего основания цилиндра, вершины верхнего основания принадлежат боковой поверхности конуса. Отношение длины диагонали основания призмы к ее высоте равно отношению длины диаметра цилиндра к его высоте. При какой высоте цилиндра объем призмы будет наибольшим? Найти этот объем призмы, если высота конуса – H и радиус основания – R.

Дано. ASO – конус;

SO = H;

AO = R;

CL/CM = BK/BN;

Найти. BN, чтобы Vпр = max 

Решение. BN = x, CM = h, Vпр = Sосн CM = CL2h/2.

∆CSD подобен ∆ASO: CD/AO = SD/SO;

CD/R = (H – x - h)/H;

CD = R(H – x -h)/H.

∆BSE подобен ∆ASO: BE/AO = SE/SO;

BE/R = (H - h)/H;

BE = R(H - h)/H.

Находим отношение  CD/BE = (H – x - h)/(H - x).

Исходя из условия (CL/CM = BK/BN) задачи делаем вывод,

что CD/BE = h/x, т. е. (H – x - h)/(H - x) = h/x => h = (Hx – x2)/H

Тогда CD = R(H – x – (Hx – x2)/H)/H = R(H2 – Hx – Hx +x2)/H2 = R(H - x)2/H2,

CL = 2CD = 2R(H - x)2/H2.

V = 4R2(H - x)4(H - x)x/(2H*H4) = 2R2(H - x)5x/H5;

V’(x) = 2R2((H - x)5 – 5(H - x)4 x)/H5 = 0,

(H – x) – 5x = 0, x = H/6.

V = 2HR2(5H/6)5/(6H5) = 2R2H*55/66.

Ответ: при  H/6, Vmax = 2R2H*55/66. 
 
 
 
 

В физике производная  применяется  в  основном для вычисления наибольших или наименьших значений для каких-либо величин.  
 

Задача 1.Потенциальная энергия U поля частицы, в котором находится другая, точно такая же частица имеет вид: U = a/r2 – b/r, где a и b — положительные постоянные, r — расстояние между частицами.

      Найти:

                   а) значение r0 соответствующее равновесному положению частицы;

                   б) выяснить устойчиво ли это  положение;

                   в) Fmax значение силы притяжения;

                   г) изобразить примерные графики  зависимости U(r) и F(r). 

U = a/r2 – b/r;    Решение:

a и b — counts;   Для определения r0 соответствующего равновесному

r0 — ?    положению частицы исследуем f = U(r) на экстремум.

Fmax — ?    Используя связь между потенциальной энергией поля

                              U и F, тогда F = -dU/dr, получим F = -dU/dr = - (-2a/r3+b/r2) = 0;

при этом r = r0 2a/r3 = b/r2 => r0 = 2a/b;

Устойчивое или  неустойчивое равновесие определим  по знаку второй производной:

d2U/dr02= dF/dr0=-6a/r04 + 2b/r03 = -6a/(2a/b)4+2b/(2a/b)3=(-b4/8a3)<0;

равновесие  устойчивое.

Для определения  Fmax притяжения исследую на экстремумы функцию:

F = 2a/r3— b/r2;

dF/dr = -6a/r4 + 2b/ r3 = 0;

при r = r1 = 3a/b;

подставляя, получу Fmax = 2a/r31 — b/r31 = - b3/27a2;

U(r) = 0;       при r = a/b;       U(r)min при r = 2, a/b = r0;

F = 0;          F(r)max при r = r1 = 3a/b; 
 

Задача 2. Три резистора сопротивлениями R1, R2, R3 соединены параллельно. Сопротивление R1 в 9 раз больше сопротивления R2. Если все три резистора соединить последовательно, то сопротивление цепи равно R.

Определить сопротивления  резисторов при которых сопротивление  исходной цепи будет наибольшим. 

R1 = 9 R2      Решение:

              При параллельном соединении  резисторов эквивалентное 

R1, R2, R3   сопротивление по формуле:

    1/Rэкв = 1/R1+1/R2+1/R3;

Rэкв max— ?                    выражу R3 через R2:

     R3 = R— R1—R2=R—10R2;

    тогда 1/Rэкв = (10R—91R2)/(9R2(R—10R2));

Задача сведена  к определению наименьшего значения функции в интервале [0;R/10].

Возьмем производную  от f(1/Rэкв) по R2 и преобразуем ее:

(1/Rэкв)’ = -910(R2—R/7)(R2—R/13)/(9R22 (R-10R2)2);

В интересующем нас интервале только одна точка R2 = R/13 в которой эта производная меняет знак с “—” слева на ”+”справа. Поэтому в точке R2 = R/13 достигается минимум функции 1/Rэкв и максимум функции Rэкв, при этом

R1 = 9R/13; R2 = 1R/13; R3 = 3R/13;

Rэкв max = 9R/169; 
 

Задача 4. В магнитном поле с большой высоты падает кольцо, имеющее диаметр d и сопротивление R. Плоскость кольца все время горизонтальна. Найти установившуюся скорость падения кольца, если вертикальная составляющая индукции магнитного поля изменяется с высотой H по закону B = B0(1 + αH), где α = const (черт.).

Решение. Пусть  n – нормаль к плоскости кольца, тогда магнитный поток, созданный вертикальной составляющей магнитного поля.,

Ф = BS = B0(1 + αH)S, где S = πd2/4 – площадь контура.

ЭДС индукции, возникающая  в кольце,

E = - Ф’(t) = - (B0(1 + αH)S)’ = - B0SαH’(t).

Производная H’(t) = νн – это проекция скорости кольца на ось H. Таким образом,

Ei = - B0Sα( - νн).

          Так как  скорость кольца направлена против оси  H, то νн = - ν, где ν – модуль скорости кольца и Ei = B0Sαν.

             По кольцу протекает индукционный ток

          J = Ei /R = B0Sαν/R.

          В результате в кольце за промежуток времени  Δt выделяется количество теплоты

Q = J2RΔt.

          На высоте H1 кольцо обладает механической энергией

W1 = mgH1 + mν2/2,

на высоте H2

W2 = mgH2 = mgH2 + mν2/2

(ν = const, т. е. скорость кольца не меняется). По закону сохранения энергии

W1 = W2 + Q  => mgH1 = mgH2 + J2RΔt => mg(H1 - H2) = (B0Sαν/R)2RΔt =>

                    mg(H1 - H2) = (B0Sαν)2Δt/R                    (*)

Разность (H1 - H2) есть расстояние, пройденное кольцом при равномерном движении, поэтому H1 - H2 = νΔt, и уравнение (*) примет вид:

mgνΔt = (B0Sαν)2Δt/R => mg = (B0Sα)2ν/R =>

ν = mgR/(B0Sα)2 = 16mgR/(B0πd2α)2.

Информация о работе Производная и её применение в алгебре, геометрии и физике