Автор работы: Пользователь скрыл имя, 17 Сентября 2010 в 12:47, Не определен
Реферат
Касательная в
стационарных точках параллельна оси
Ох. В окрестности точки максимума касательная
составляет с осью абсцисс острый угол,
если точка лежит слева от точки максимума,
и тупой угол, если справа от нее (черт.).
В случае минимума, напротив, касательная
составляет с осью абсцисс тупой угол,
если точка находится слева от точки минимума,
и острый, если справа от нее (черт.).
Правило
нахождения экстремума
1°. Чтобы найти экстремум функции, надо:
1) найти производную данной функции;
2) приравнять производную нулю и решить полученное уравнение; из полученных корней отобрать действительные и расположить их (для удобства) по их величине от меньшего к большему; в том случае, когда все корни оказываются мнимыми, данная функция не имеет экстремума;
3) определить знак производной в каждом из промежутков, отграниченных стационарными точками;
4) если производная положительна в промежутке, лежащем слева от данной стационарной точки, и отрицательна в промежутке, лежащем справа от нес, то данная точка есть точка максимума функции, если же производная отрицательна слева и положительна справа от данной стационарной точки, то данная точка есть точка минимума функции; если производная имеет один и тот же знак как слева, так и справа от стационарной тонки, то в этой точке нет ни максимума, ни минимума, функции;
5) затенить в данном выражении функции аргумент значением, которое дает максимум или минимум функции; получим значение соответственно максимума или минимума функции.
Если функция
имеет точки разрыва, то эти точки
должны быть включены в число стационарных
точек, разбивающих Ох на промежутки, в
которых определяется знак производной.
Нахождение
экстремума при помощи
второй производной
1°. Лемма. Если при х = с производная положительна (или отрицательна), то в достаточно малой окрестности точки х = с приращение функции и приращение аргумента в точке с имеют одинаковые (или разные) знаки.
Доказательство
от противного. Пусть для определенности
f '(c)>0, т. е.
Предположим, что при стремлении ∆x к нулю приращения ∆y и ∆x имеют разные знаки. Тогда отношение ∆y/∆x отрицательно и его предел
f '(c) ≤ 0,
что противоречит условию.
Так же доказывается и вторая часть леммы.
2°. Теорема. Если при х = с первая производная функции f(x) равна нулю, f '(c)=0, а вторая производная положительна, f "(c)>0, то в точке х = с функция f(x) имеет минимум;
если же вторая производная отрицательна, f "(с) < 0, то в точке х = с функция f(x) имеет максимум.
Доказательство.
Вторая производная по отношению
к первой производной является тем
же, чем первая производная по отношению
к данной функции, т. е.
Согласно лемме, если при х = с производная (в данном случае вторая) положительна, то в достаточно малой окрестности 2δ точки с приращение функции (в данном случае первой производной) имеет тот же знак, что и приращение аргумента. Слева от точки с приращение аргумента отрицательно, значит, и приращение функции отрицательно, т.е.
f '(c — ∆x)—f(c)<0, (0 < ∆x < δ).
Отсюда:
f '(c-∆x)<f '(c) = 0. (1).
Справа от точки с приращение аргумента положительно, т. е.
f '(c +∆x)-f '(c)>0.
Отсюда:
f '(c + ∆x)>f '(c) = 0. (2)
Получили: первая производная функции f(x) слева от точки с отрицательна (1), а справа положительна (2). Значит, в точке х = с функция f(x) имеет минимум, как это и требовалось доказать.
Так же доказывается теорема и в случае f "(с)<0.
3°. Доказанная
теорема определяет второй способ нахождения
экстремума. Он отличается от первого
тем, что третья и четвертая операции первого
способа заменяются: а) нахождением второй
производной и б) определением ее знака
в стационарной точке. Результат исследования
можно выразить так:
Если знак числа f "(с), | то при х = с f(x) имеет |
плюс минус |
минимум максимум |
Если f '(с) = 0, то исследование функции на максимум и минимум надо провести первым способом.
4°. Пример 1. Исследовать вторым способом на максимум и минимум функцию: у = 5 — х2 — х3 — x4/4.
Решение. 1. Находим первую производную:
y ' = - 2х - Зx2 — x3
2. Приравниваем первую производную нулю и решаем полученное уравнение:
— 2x — Зx2 — x3 = 0, или x(x2+3х+2) = 0,
отсюда x = 0 или x2+ 3х + 2 = 0.
Решая квадратное уравнение x2 + 3х + 2 = 0, получаем:
x = (-3 + 1)/2.
Стационарных точек три: x1 = — 2, x2 = — 1 и х3 = 0.
3. Находим вторую производную:
у" = — 2 - бx — Зx2.
4. Определяем знак второй производной, заменяя х его значением сначала в первой, затем во второй и потом в третьей стационарной
точке:
при х = — 2 у'' = — 2 — 6(— 2) — 3(— 2)2 = — 2, при х = — 1 у" = — 2 — 6(— 1) — 3(— l)2 = + 1, при x = 0 у" = — 2.
Следовательно, данная функция имеет минимум при х = —1 и максимум при х = — 2 и при х =0,
Пример 2, Исследовать на максимум и минимум функцию: у = х4.
Решение: 1) y' = 4x3;
2) 4х3 = 0; х = 0;
3) y" = 12x2;
4) при х = 0 y" = 0.
Так как оказалось, что вторая производная равна нулю, то исследование ведем первым способом: при х < 0 у' = 4x3 < 0, а при х > 0 у' = 4x3 > 0. Следовательно, функция у = х4 имеет минимум в точке x = 0.
5°. Второй способ
нахождения экстремума имеет смысл применять
в том случае, когда вторая производная
отыскивается просто; если же дифференцирование
сопровождается трудными преобразованиями
и не упрощает выражение первой производной,
то первый способ может быстрее привести
к цели.
Направление
вогнутости кривой
Пусть две точки M1 и M2 имеют одну и ту же абсциссу. Если при этом ордината точки M1 более (менее) ординаты точки M2, то говорят, что точка M1 лежит выше (ниже) точки M2. Говорят также, что в промежутке а<х<b линия y = f(x) лежит выше (ниже) линии у=φ(х), если в этом промежутке каждая точка первой линии лежит выше (ниже) соответствующей ей точки второй линии, т. е. если
f(x)> φ(x) [или f(x)< φ(x)].
Определение. В промежутке а < х < b кривая— график дифференцируемой функции y=f(x) — называется вогнутой вверх (вниз), если она лежит выше (ниже) касательной в любой точке данного промежутка.
Кривая, изображенная на черт., является вогнутой, вверх в промежутке а < х < b и вогнутой вниз в промежутке b < х < с.
2°. В более подробных курсах анализа доказывается, что если производная f '(х) — возрастающая (убывающая) функция в промежутке а < х < b, то кривая y=f(х) является вогнутой вверх (вниз) в этом промежутке.
Чтобы уяснить эту теорему, наметим на оси Ох (черт.)
произвольно ряд точек и проведем через каждую из них
прямую так, чтоб и угловом коэффициент прямой возрастал с возрастанием абсциссы намеченных точек; затем, приняв эти прямые за касательные к некоторой кривой линии [tgφ = f '(x)], построим эту кривую линию. Мы видим, что она может лежать только выше каждой из проведенных касательных.
3°. Достаточный признак вогнутости вверх (вниз). Если в промежутке а<х<b вторая производная f ''(x) положительна (отрицательна), за исключением отдельных точек, в которых она равна нулю, то кривая у=f(х) в этом промежутке вогнута вверх (вниз).
Действительно, если в промежутке а<х<b вторая производная f "(x), например, положительна, за исключением отдельных точек, в которых она равна нулю, то первая производная f '(х)—возрастающая функция, а кривая y = f(x), согласно предыдущему, является вогнутой вверх.
Если f "(x)
= 0 не в отдельных точках, а в некотором
промежутке, то в этом промежутке f '(x)
— постоянная функция, a f(x)
— линейная функция, график ее — прямая
линия, и говорить о вогнутости не имеет
смысла.
Точки
перегиба
1°. Определение, Если в некоторой окрестности точки х = с кривая —график дифференцируемой функции y = f(x) — имеет слева и справа от точки х = с вогнутости противоположного направления, то значение х = с называется точкой перегиба.
Точку М кривой (черт.), абсцисса которой х = с, называют также точкой перегиба, она отделяет дугу кривой, вогнутую вверх, от дуги, вогнутой вниз. Точкой перегиба может быть только та точка, в которой к кривой имеется касательная. В окрестности точки перегиба кривая лежит по обе стороны от касательной: выше и ниже ее. Заметим, что она расположена также по обе стороны от нормали. Но такая точка, как Р (черт.), в которой единственной касательной не имеется, точкой перегиба не является.
2°. Так как слева и справа от точки перегиба х = с вогнутости кривой y=f(x) разного направления, то вторая производная f "(x) имеет слева и справа от точки х = с разные знаки или равна нулю. Полагая вторую производную непрерывной и окрестности точки х = с, заключаем, что в точке перегиба она равна нулю, т. е.
f(c) = 0.
3°. Отсюда следует правило нахождения точек перегиба:
1) найти вторую производную данной функции;
2) приравнять ее нулю и решить полученное уравнение (или найти те значения х, при которых производная теряет числовой смысл), из полученных корней отобрать действительные и расположить их no величине от меньшего к большему;
3) определить знак второй производной в каждом, из промежутков, отграниченных полученными корнями;
4) если при этом в двух промежутках, отграниченных исследуемой точкой, знаки второй производной окажутся разными, то имеется точка перегиба, если одинаковыми, то точки перегиба нет.
4°. Примеры.
Найти точки перегиба и
1) у = lп х.
Р е ш е н и е. Находим вторую производную:
y '=1/x; y ''= -1/x2.
При всяком значении x = (0 < х <+∞) у" отрицательна. Значит, логарифмика точек перегиба не имеет и обращена вогнутостью вниз.
2) у = sin x.
Решение. Находим вторую производную:
y' =cos x, y'' = -sin x.
Полагая - sin x = 0, находим, что x = kπ, где k - целое число.
Если 0 < x< π, то sin x положителен и y '' отрицательна, если же π < x< 2π, то sin x отрицателен и y'' положительна и т. д. Значит, синусоида имеет точки перегиба 0, π, 2π,...
В первом промежутке
0 < x< π она обращена вогнутостью вниз,
во втором - вогнутостью вверх и т.
д.
Механическое
значение второй производной
Предположим, что точка движется прямолинейно и пройденный ею путь определяется уравнением s = f(t), где t время. Скорость v в момент времени t есть производная от пути по времени, т. е.
v=ds/dt.
Информация о работе Производная и её применение в алгебре, геометрии и физике