Производная и её применение в алгебре, геометрии и физике

Автор работы: Пользователь скрыл имя, 17 Сентября 2010 в 12:47, Не определен

Описание работы

Реферат

Файлы: 1 файл

Производная и ее применение в алгебре, геометрии, физике.doc

— 428.50 Кб (Скачать файл)

Касательная в  стационарных точках параллельна оси  Ох. В окрестности точки максимума касательная составляет с осью абсцисс острый угол, если точка лежит слева от точки максимума, и тупой угол, если справа от нее (черт.). В случае минимума, напротив, касательная составляет с осью абсцисс тупой угол, если точка находится слева от точки минимума, и острый, если справа от нее (черт.). 
 

Правило нахождения экстремума 

. Чтобы найти экстремум функции, надо:

1) найти производную данной функции;

2) приравнять производную нулю и решить полученное уравнение; из полученных корней отобрать действительные и расположить их (для удобства) по их величине от меньшего к большему; в том случае, когда все корни оказываются мнимыми, данная функция не имеет экстремума;

3) определить знак производной в каждом из промежутков, отграниченных стационарными точками;

4) если производная положительна в промежутке, лежащем слева от данной стационарной точки, и отрицательна в промежутке, лежащем справа от нес, то данная точка есть точка максимума функции, если же производная отрицательна слева и положительна справа от данной стационарной точки, то данная точка есть точка минимума функции; если производная имеет один и тот же знак как слева, так и справа от стационарной тонки, то в этой точке нет ни максимума, ни минимума, функции;

5) затенить в данном выражении функции аргумент значением, которое дает максимум или минимум функции; получим значение соответственно максимума или минимума функции.

Если функция  имеет точки разрыва, то эти точки должны быть включены в число стационарных точек, разбивающих Ох на промежутки, в которых определяется знак производной. 
 

Нахождение  экстремума при помощи второй производной 

. Лемма. Если при х = с производная положительна (или отрицательна), то в достаточно малой окрестности точки х = с приращение функции и приращение аргумента в точке с имеют одинаковые (или разные) знаки.

Доказательство  от противного. Пусть для определенности f '(c)>0, т. е. 
 

Предположим, что  при стремлении ∆x к нулю приращения ∆y и ∆x имеют разные знаки. Тогда отношение ∆y/∆x отрицательно и его предел

f '(c) ≤ 0,

что противоречит условию.

Так же доказывается и вторая часть леммы.

. Теорема. Если при х = с первая производная функции f(x) равна нулю, f '(c)=0, а вторая производная положительна, f "(c)>0, то в точке х = с функция f(x) имеет минимум;

если  же вторая производная  отрицательна, f "(с) < 0, то в точке х = с функция f(x) имеет максимум.

Доказательство. Вторая производная по отношению  к первой производной является тем же, чем первая производная по отношению к данной функции, т. е. 
 

Согласно лемме, если при х = с производная (в данном случае вторая) положительна, то в достаточно малой окрестности точки с приращение функции (в данном случае первой производной) имеет тот же знак, что и приращение аргумента. Слева от точки с приращение аргумента отрицательно, значит, и приращение функции отрицательно, т.е.

f '(c — ∆x)—f(c)<0,            (0 < ∆x < δ).

Отсюда:

              f '(c-∆x)<f '(c) = 0.                 (1).

Справа от точки с приращение аргумента положительно, т. е.

f '(c +∆x)-f '(c)>0.

Отсюда:

                  f '(c + ∆x)>f '(c) = 0.      (2)

Получили: первая производная функции f(x) слева от точки с отрицательна (1), а справа положительна (2). Значит, в точке х = с функция f(x) имеет минимум, как это и требовалось доказать.

Так же доказывается теорема и в случае f "(с)<0.

. Доказанная теорема определяет второй способ нахождения экстремума. Он отличается от первого тем, что третья и четвертая операции первого способа заменяются: а) нахождением второй производной и б) определением ее знака в стационарной точке. Результат исследования можно выразить так: 

Если  знак числа f "(с), то при х = с   f(x) имеет
 
плюс

минус

 
минимум

                        максимум

 

Если f '(с) = 0, то исследование функции на максимум и минимум надо провести первым способом.

. Пример 1. Исследовать вторым способом на максимум и минимум функцию: у = 5 — х2 — х3 — x4/4.

Решение. 1. Находим  первую производную:

y ' = - 2х - Зx2 — x3

2. Приравниваем  первую производную нулю и  решаем полученное уравнение:

— 2x — Зx2 — x3 = 0, или x(x2+3х+2) = 0,

отсюда  x = 0 или x2+ 3х + 2 = 0.

Решая квадратное уравнение x2 + 3х + 2 = 0, получаем:

x = (-3 + 1)/2.

Стационарных  точек три: x1 = — 2, x2 = — 1 и х3 = 0.

3. Находим вторую  производную:

у" = — 2 - бx — Зx2.

4. Определяем  знак второй производной, заменяя х его значением сначала в первой, затем  во второй и потом в третьей стационарной

точке:

при х = — 2 у'' = — 2 — 6(— 2) — 3(— 2)2 = — 2, при х = — 1  у" = — 2 — 6(— 1) — 3(— l)2 = + 1, при x = 0  у" = — 2.

Следовательно, данная функция имеет минимум при х = —1 и максимум при х = — 2 и при х =0,

Пример  2, Исследовать  на максимум и минимум функцию: у = х4.

Решение: 1) y' = 4x3;

2) 3 = 0; х = 0;

3) y" = 12x2;

4) при х = 0  y" = 0.

Так как оказалось, что вторая производная равна  нулю, то исследование ведем первым способом: при х < 0   у' = 4x3 < 0, а при х > 0    у' = 4x3 > 0. Следовательно, функция у = х4 имеет минимум в точке x = 0.

. Второй способ нахождения экстремума имеет смысл применять в том случае, когда вторая производная отыскивается просто; если же дифференцирование сопровождается трудными преобразованиями и не упрощает выражение первой производной, то первый способ может быстрее привести к цели. 
 

Направление вогнутости кривой 

Пусть две точки  M1 и M2 имеют одну и ту же абсциссу. Если при этом ордината точки M1 более (менее) ординаты точки M2, то говорят, что точка M1 лежит выше (ниже) точки M2. Говорят также, что в промежутке а<х<b линия y = f(x) лежит выше (ниже) линии у=φ(х), если в этом промежутке каждая точка первой линии лежит выше (ниже) соответствующей ей точки второй линии, т. е. если

f(x)> φ(x) [или f(x)< φ(x)].

Определение. В промежутке а < х < b криваяграфик дифференцируемой функции y=f(x) — называется вогнутой вверх (вниз), если она лежит выше (ниже) касательной в любой точке данного промежутка.

Кривая, изображенная на черт., является вогнутой, вверх в  промежутке а < х < b и вогнутой вниз в промежутке b < х < с.

. В более подробных курсах анализа доказывается, что если производная f '(х) — возрастающая (убывающая) функция в промежутке а < х < b, то кривая y=f(х) является вогнутой вверх (вниз) в этом промежутке.

Чтобы уяснить  эту теорему, наметим на оси  Ох (черт.)

произвольно ряд  точек и проведем через каждую из них

прямую так, чтоб и угловом коэффициент прямой возрастал с возрастанием абсциссы намеченных точек; затем, приняв эти прямые за касательные к некоторой кривой линии [tgφ = f '(x)], построим эту кривую линию. Мы видим, что она может лежать только выше каждой из проведенных касательных.

. Достаточный признак вогнутости вверх (вниз). Если в промежутке а<х<b вторая производная f ''(x) положительна (отрицательна), за исключением отдельных точек, в которых она равна нулю, то кривая у=f(х) в этом промежутке вогнута вверх (вниз).

Действительно, если в промежутке а<х<b вторая производная f "(x), например, положительна, за исключением отдельных точек, в которых она равна нулю, то первая производная f '(х)—возрастающая функция, а кривая y = f(x), согласно предыдущему, является вогнутой вверх.

Если f "(x) = 0 не в отдельных точках, а в некотором промежутке, то в этом промежутке f '(x) — постоянная функция, a f(x) — линейная функция, график ее — прямая линия, и говорить о вогнутости не имеет смысла. 
 

Точки перегиба 

. Определение, Если в некоторой окрестности точки х = с кривая график дифференцируемой функции y = f(x) имеет слева и справа от точки х = с вогнутости противоположного направления, то значение х = с называется точкой перегиба.

Точку М кривой (черт.), абсцисса которой х = с, называют также точкой перегиба, она отделяет дугу кривой, вогнутую вверх, от дуги, вогнутой вниз. Точкой перегиба может быть только та точка, в которой к кривой имеется касательная. В окрестности точки перегиба кривая лежит по обе стороны от касательной: выше и ниже ее. Заметим, что она расположена также по обе стороны от нормали. Но такая точка, как Р (черт.), в которой единственной касательной не имеется, точкой перегиба не является.

. Так как слева и справа от точки перегиба х = с вогнутости кривой y=f(x) разного направления, то вторая производная f "(x) имеет слева и справа от точки х = с разные знаки или равна нулю. Полагая вторую производную непрерывной и окрестности точки х = с, заключаем, что в точке перегиба она равна нулю, т. е.

f(c) = 0.

. Отсюда следует правило нахождения точек перегиба:

1) найти вторую производную данной функции;

2) приравнять ее нулю и решить полученное уравнение (или найти те значения х, при которых производная теряет числовой смысл), из полученных корней отобрать действительные и расположить их no величине от меньшего к большему;

3) определить знак второй производной в каждом, из промежутков, отграниченных полученными корнями;

4) если при этом в двух промежутках, отграниченных исследуемой точкой, знаки второй производной окажутся разными, то имеется точка перегиба, если одинаковыми, то точки перегиба нет.

4°. Примеры.  Найти точки перегиба и определить  промежутки вогнутости вверх и вниз кривых:

1) у = lп х.

Р е ш е  н и е. Находим вторую производную:

y '=1/x;       y ''= -1/x2.

При всяком значении x = (0 < х <+∞) у" отрицательна. Значит, логарифмика точек перегиба не имеет и обращена вогнутостью вниз.

2) у = sin x.

Решение. Находим  вторую производную:

y' =cos x,         y'' = -sin x.

Полагая  - sin x = 0, находим, что x = kπ, где k - целое число.

Если 0 < x< π, то sin x положителен и y '' отрицательна, если же π < x< 2π, то sin x отрицателен и y'' положительна и т. д. Значит, синусоида имеет точки перегиба 0, π, 2π,...

В первом промежутке 0 < x< π она обращена вогнутостью вниз, во втором - вогнутостью вверх и т. д. 
 

Механическое  значение второй производной 

Предположим, что  точка движется прямолинейно и пройденный ею путь определяется уравнением s = f(t), где t время. Скорость v в момент времени t есть производная от пути по времени, т. е.

v=ds/dt.

Информация о работе Производная и её применение в алгебре, геометрии и физике