Автор работы: Пользователь скрыл имя, 17 Сентября 2010 в 12:47, Не определен
Реферат
Скорость изменения скорости в момент времени t есть ускорение а,
a=(v)' = (ds/dt)' = (d2s/dt2).
Вторая производная от пути по времени есть ускорение прямолинейного движения в данный момент времени.
Пример. Прямолинейное движение точки совершается по закону:
s = (t3 — 2) м.
Определить ускорение в момент t = 10 сек.
Решение. Ускорение а = d2s/dt2.
Дифференцируя функцию s=t3 — 2, находим d2s/dt2 =6t
Следовательно,
a = 6t = 6*10 = 60; a = 60 м\сек2.
2°. Если движение неравномерное, то сила F, производящая его, непостоянна, каждому моменту времени t соответствует определенное значение действующей силы F, и сила, таким образом, есть функция времени t, F=f(t).
По закону Ньютона, в каждый момент времени действующая сила F равна произведению массы т на ускорение а, т. е.
F=ma, или f(t) = ma.
При прямолинейном движении a =d2s/dt2, поэтому
f(t) = m*d2s/dt2.
Зная уравнение прямолинейного движения, можно дифференцированием найти значение действующей силы в каждый момент времени.
Пример. Определить
силу, под действием которой
s = А*sin(ωt + ω0).
Решение. f(f) = m*d2s/dt2, поэтому находим вторую производную функции:
s = А*sin(ωt + ω0), ds/dt = А*cos(ωt+ω0)* ω,
d2s/dt2=— А*sin (ωt + ω0)* ω2 = — s*ω2 = — ω2s; f(t) = — mω2s,
т. е. рассматриваемые
колебания совершаются под
Сравнение
бесконечно малых
1°. Составим отношение бесконечно малых, приближающихся к нулю по различным законам, так что каждому рассматриваемому моменту приближения к нулю одной из бесконечно малых отвечает определенное значение каждой из рассматриваемых бесконечно малых. Например, пусть в те моменты приближения к нулю, когда значения α = 10;1; 0.1; 0,01 и т.д.;
значения β =1000; 1; 0,001; 0,000001 и т.д.
Отношение β/α =100; 1; 0, 01; 0, 0001 и т.д., т.е.
значение отношения бесконечно малых не остается неизменным в процессе приближения их к нулю. Отношение бесконечно малых, таким образом,—величина переменная, и у нее может существовать предел, конечный (равный нулю, как в примере, или отличный от нуля) или бесконечный, а может предела и не существовать.
2°. Определения: 1) β называется бесконечно малой высшего порядка малости, чем α, если предел отношения β/α равен нулю, т. е. если
limβ/α =0;
2) β называется бесконечно малой низшего порядка малости, чем α, если
limβ/α = ∞;
3) β и α называются бесконечно малыми одинакового порядка малости, если предел их отношения есть число k, отличное от нуля, т. е. если
limβ/α = k, где k ≠ 0 и k ≠ ∞
4) β и α называются несравнимыми бесконечно малыми, если предела их отношения не существует.
3°. Примеры. 1. В рассмотренном выше примере limβ/α = 0, β высшего порядка малости, чем α, a limα/β = ∞ и α низшего порядка, чем β.
2. α =1—х
и β=1— x2
—бесконечно малые, если х→1. Отношение
β/α=(1- x2)/(1-x) = 1+x.
Значит, 1—х и 1—x2 —бесконечно малые одинакового порядка малости при х→1.
3. Сравним 1 —cosx с х при x→ 0.
т. е. 1—cos
x при х → 0 есть бесконечно малая
высшего порядка малости, чем х.
Дифференциал
функции
1°. Определение. Дифференциалом (dy) функции y=f(x) называется произведение значения производной f '(х) на произвольное приращение ∆x аргумента х, т. е.
(I)
2°. Для получения значения дифференциала функции необходимо знать два числа: начальное значение аргумента, х, и его приращение, ∆x.
Пример. Вычислить дифференциал функции у = x2 при изменении значения аргумента х от 3 до 3,1.
Решение. dy=f '(х)* ∆х. Найдем dy сначала для произвольных значений х и ∆x.
f '(x) = (x2)' =2x.
Поэтому
dy=2x*∆x.
Начальное значение аргумента х=3, приращение его ∆x = 3,1 — 3 = 0,1. Подставляя эти значения в выражение dy находим:
dy =2*3*0,1=0,6.
Для данного значения независимого переменного х дифференциал функции f(x) есть линейная функция приращения независимого переменного ∆х.
3°. Рассмотрим геометрический смысл дифференциала функции. На черт. в точке х проведена касательная к графику функции y=f(x). Из ∆MPT следует, что
PT = MP*tgφ = ∆x*f '(x).
Но по определению f '(х) *∆x = dy, поэтому PT = dy.
Дифференциал функции f(x) при данном значении х геометрически выражается приращением ординаты касательной к графику функции y=f(x) в точке х.
4°. Дифференциал dy и приращение ∆у вообще не равны между собой. На черт. dy = PT менее ∆y=PQ.
Очевидно, dy может быть и более ∆y. Это будет, например, если поднимающаяся кривая MN будет вогнута вниз.
5°. Пример. Для функции у=x2 при изменении х от 3 до 3,1 приращение ∆y = 2x*∆x + + ∆x2 = 2*3*0,1 + 0, 12 = 0, 61 Дифференциал dy = 2х *∆x = 2*3 * 0, 1 = 0,6. Принимая dy за приближенное значение ∆у, имеем: абсолютная погрешность приближения равна разности ∆у—dy=0,01, а относительная погрешность приближения есть отношение:
(∆y—dy)/dy=00,1/0,60=1,7%
6°. Разность между приращением и дифференциалом функции, ∆у—dy, высшего порядка малости, чем приращение аргумента, ∆x.
Действительно, отношение ∆y/∆x отличается от своего предела f '(x) на бесконечно малую α, причем α → 0 при стремлении ∆x к нулю,
∆y/∆x — f '(x)= α.
Производя вычитание в левой части равенства, получаем:
(∆y-f '(x)*∆x)/∆x = α, или (∆у - dy) ∆x= α,
7°. Из сказанного следует: дифференциал функции есть приближенное значение ее приращения с относительной погрешностью, стремящейся к нулю вместе с приращением аргумента.
8°. Из изложенного следует, что дифференциал dy функции y=f(x) обладает двумя свойствами:
1) dy пропорционален ∆x (dy = k∆x, где k=y');
2)
отношение (∆y—dy)/∆x
стремится к нулю при
стремлении ∆x к нулю.
Обратно. Если величина z обладает двумя свойствами:
1) z=k∆x и
2) то z есть
дифференциал функции
у.
Доказательство. Внося из (1) значение z во (2), имеем:
т. е. k = y',
а следовательно,
z = k∆x = y’∆x,
т. е. z есть дифференциал функции у.
Таким
образом, эти два
условия полностью
определяют дифференциал.
Дифференциал
аргумента. Производная
как отношение дифференциалов
1°. Определение. Дифференциалом (dx) аргумента х называется, его приращение, ∆x:
Может быть, некоторым основанием к этому служит то, что дифференциал функции у=х и приращение ее аргумента совпадают. Действительно,
dy = (x)' ∆x, или dy = ∆x.
Но так как
dy = dx, то dx = ∆x,
т.е. дифференциал функции у =х и приращение ее аргумента совпадают.
2°. Внеся в формулу (I) значение ∆x=dx, получаем:
т. е. дифференциал функции есть произведение ее производной на дифференциал аргумента.
3°. Формула (III) обладает замечательным свойством, именно: формула dy = f '(x)dx справедлива и в том случае, если x не является независимой переменной величиной, а является функцией другого аргумента, например и.
Действительно, если х есть функция от и, то f(x) есть сложная функция от u приращение dx обусловлено приращением ∆u, и dy надо вычислять по формуле;
dy = f 'u (x)* ∆u.
Но
f 'u (x)= f’x (x)* x’u
Значит,
dy = f’(x)—x'u * ∆u.
Но так как, по определению,
x'u ∆u = dx,
то, следовательно,
dy = f '(x)dx.
4°. Пример. Найти дифференциал функции:
_____________________
у = √ (e2x—1).
Решение. По формуле (III)
dy = у'*dx.
Находим у':
y’ = e2x*2/( 2√ (e2x—1)) = e2x/ √ (e2x—1).
Значит
dy = e2x*dx/ √ (e2x—1)
5°. Из формулы (III) следует;
f’(x)=dy/dx,
т. е. производная функции равна отношению дифференциала функции к дифференциалу аргумента. Это иллюстрирует черт., где
dy/dx = PT/MP = tgφ=f '(x)
для произвольного
значения dx = MP.
Приложения
понятия дифференциала
к приближенным вычислениям
1°. Разность ∆y—dy—бесконечно малая высшего порядка малости, чем ∆x, поэтому при достаточно малом ∆x
(IV)
Это означает, что при малых изменениях аргумента (от начального значения х) величину изменения функции y=f(x) можно приближенно считать пропорциональной величине изменения аргумента с коэффициентом пропорциональности, равным значению производной f '(x); кривую y=f (x) при этом можно приближенно заменить касательной к ней в точке х.
Информация о работе Производная и её применение в алгебре, геометрии и физике