Автор работы: Пользователь скрыл имя, 16 Ноября 2010 в 10:20, Не определен
Учебное пособие
Если
процентные деньги не выплачиваются
сразу по мере их начисления, а присоединяются
к первоначальной сумме долга, то
долг, таким образом, увеличивается
на невыплаченную сумму процентов, и последующее
начисление процентов происходит на увеличенную
сумму долга:
FV = PV + I = PV + PV • i = PV • (1 + i)
–
за один период начисления;
FV = (PV + I) • (1 + i) = PV • (1 + i) • (1 + i) = PV • (1 + i)2
–
за два периода начисления;
отсюда,
за n периодов начисления формула примет
вид:
FV
= PV • (1 + i)n = PV • kн
,
где FV – наращенная сумма долга;
PV – первоначальная сумма долга;
i – ставка процентов в периоде начисления;
n – количество периодов начисления;
kн – коэффициент (множитель) наращения сложных процентов.
Эта формула называется формулой сложных процентов.
Как было выше указано, различие начисления простых и сложных процентов в базе их начисления. Если простые проценты начисляются все время на одну и ту же первоначальную сумму долга, т.е. база начисления является постоянной величиной, то сложные проценты начисляются на увеличивающуюся с каждым периодом начисления базу. Таким образом, простые проценты по своей сути являются абсолютными приростами, а формула простых процентов аналогична формуле определения уровня развития изучаемого явления с постоянными абсолютными приростами. Сложные проценты характеризуют процесс роста первоначальной суммы со стабильными темпами роста, при наращении ее по абсолютной величине с ускорением, следовательно, формулу сложных процентов можно рассматривать как определение уровня на базе стабильных темпов роста.
Согласно
общей теории статистики, для получения
базисного темпа роста
(1
+ i).
Тогда
базисный темп роста за весь период,
исходя из постоянного темпа прироста,
имеет вид:
(1
+ i)n .
Базисные темпы роста или коэффициенты (множители) наращения, зависящие от процентной ставки и числа периодов наращения, табулированы и представлены в Приложении 2. Экономический смысл множителя наращения состоит в том, что он показывает, чему будет равна одна денежная единица (один рубль, один доллар и т.п.) через n периодов при заданной процентной ставке i. 5>>>
Графическая
иллюстрация соотношения
Рис. 4. Наращение по простым и сложным процентам. |
Как видно из рисунка 4, при краткосрочных ссудах начисление по простым процентам предпочтительнее, чем по сложным процентам; при сроке в один год разница отсутствует, но при среднесрочных и долгосрочных ссудах наращенная сумма, рассчитанная по сложным процентам значительно выше, чем по простым.
При любом i,
если 0 < n < 1, то (1 + ni) > (1 + i)n ;
если n > 1, то (1 + ni) < (1 + i)n ;
если n = 1, то (1 + ni) = (1 + i)n .
Таким образом, для лиц, предоставляющих кредит:
Пример 8. Сумма в размере 2'000 долларов дана в долг на 2 года по ставке процента равной 10% годовых. Определить проценты и сумму, подлежащую возврату.
Решение:
Наращенная сумма
FV = PV • (1 + i)n = 2'000 • (1 + 0'1)2 = 2'420 долларов
или
FV = PV • kн = 2'000 • 1,21 = 2'420 долларов,
где kн = 1,21 (Приложение 2).
Сумма начисленных процентов
I = FV - PV = 2'420 - 2'000 = 420 долларов. 6>>>
Таким
образом, через два года необходимо вернуть
общую сумму в размере 2'420 долларов, из
которой 2'000 долларов составляет долг,
а 420 долларов – "цена долга".
Достаточно часто финансовые контракты заключаются на период, отличающийся от целого числа лет.
В случае, когда срок финансовой операции выражен дробным числом лет, начисление процентов возможно с использованием двух методов:
FV = PV • (1 + i)n,
n
= a + b,
где n – период сделки;
a – целое число лет;
b – дробная часть года.
FV
= PV • (1 + i)a • (1 + bi).
Поскольку b < 1, то (1 + bi) > (1 + i)a, следовательно, наращенная сумма будет больше при использовании смешанной схемы.
Пример. В банке получен кредит под 9,5% годовых в размере 250 тыс. долларов со сроком погашения через два года и 9 месяцев. Определить сумму, которую необходимо вернуть по истечении срока займа двумя способами, учитывая, что банк использует германскую практику начисления процентов.
Решение:
Общий метод:
FV = PV • (1 + i)n = 250 • (1 + 0,095)2,9 = 320,87 тыс. долларов.
Смешанный метод:
FV = PV • (1 + i)a • (1 + bi) =
= 250 • (1 + 0,095)2 • (1 + 270/360 • 0,095) =
= 321,11 тыс. долларов.
Таким образом, по общему методу проценты по кредиту составят
I = S - P = 320,87 - 250,00 = 70,84 тыс. долларов, 7>>>
а по смешанному методу
I = S - P = 321,11 - 250,00 = 71,11 тыс. долларов.
Как видно, смешанная схема более выгодна кредитору.
<<<5 | При
пользовании финансовыми |
<<<6 | Сравните полученный результат с результатом примера 1. Не трудно заметить, что сложная ставка дает большую сумму процентов. |
<<<7 | При расчете по смешанному методу результат всегда оказывается больше. |
Период начисления по сложным процентам не всегда равен году, однако в условиях финансовой операции указывается не ставка за период, а годовая ставка с указанием периода начисления – номинальная ставка ( j ).
Номинальная ставка (nominal rate) – годовая ставка процентов, исходя из которой определяется величина ставки процентов в каждом периоде начисления, при начислении сложных процентов несколько раз в год.
Эта ставка
Если
начисление процентов будет производиться
m раз в год, а срок долга – n лет,
то общее количество периодов начисления
за весь срок финансовой операции составит
N
= n • m
Отсюда
формулу сложных процентов
FV
= PV • (1 + j / m)N = P
• (1 + j /m)mn ,
где
j – номинальная годовая ставка процентов.
Пример 9. Изменим условия предыдущего примера, введя ежеквартальное начисление процентов.
Решение:
Количество периодов начисления:
N = m • n = 4 • 2 = 8
Наращенная сумма составит:
FV = PV • (1 + j / m)mn = 2'000 • (1 + 0,1 / 4 )8 = 2'436,81 руб.
Сумма начисленных процентов:
I = FV - PV = 2'436,81 - 2'000 = 436,81 руб.
Таким
образом, через два года на счете
будет находиться сумма в размере
2'436,81 руб., из которой 2'000 руб. является
первоначальной суммой, размещенной
на счете, а 436,81 руб. – сумма начисленных
процентов.
Наряду
с номинальной ставкой
(1
+ i)n = (1 + j / m)m
• n,
следовательно,
i
= (1 + j / m)m - 1.
Из формулы следует, что эффективная ставка зависит от количества внутригодовых начислений.
Расчет
эффективной ставки является мощным
инструментом финансового анализа, поскольку
ее значение позволяет сравнивать между
собой финансовые операции, имеющие различные
условия: чем выше эффективная ставка
финансовой операции, тем (при прочих равных
условиях) она выгоднее для кредитора.
Пример 10. Рассчитаем эффективную ставку для финансовой операции, рассмотренной в предыдущем примере, а также для вклада при ежемесячном начислении процентов по годовой ставке 10%.
Решение:
Эффективная ставка ежеквартального начисления процентов, исходя из 10% годовых, составит:
i = (1 + j / m)m - 1 = (1 + 0,1 / 4)4 - 1 = 0,1038.
Эффективная ставка ежемесячного начисления процентов будет равна: