Эконометрика как наука: Содержание, цели, задачи, направления развития

Автор работы: Пользователь скрыл имя, 20 Сентября 2011 в 17:59, курсовая работа

Описание работы

Проблема отнесения макроэкономических рядов динамики, имеющих выраженный тренд, к одному из двух указанных классов активно обсуждалась в последние два десятилетия в мировой эконометрической и экономической литературе, поскольку траектории TS и DS ряды отличаются друг от друга кардинальным образом.

Содержание работы

Введение 3
Глава 1. Обзор процедур, используемых для различения TS и DS рядов 5
П1.1. Критерий Дики-Фуллера 5
П1.2. Расширенный критерий Дики-Фуллера. Выбор количества запаздывающих разностей 8
Глава 2. Проблема анализа временных рядов 9
П2.1. Стационарные временные ряды и их основные характеристики 9
П2.2. Неслучайная составляющая временного ряда и методы его сглаживания 13
П2.3. Модели стационарных временных рядов и их идентификация. Модели авторегрессии порядка p (AR(p)-модели) 23
Заключение 30
Литература 30

Файлы: 1 файл

Эконометрика как наука.doc

— 391.00 Кб (Скачать файл)

               (П2.9)

    где wk (k = -m, -m + 1,…, m) - некоторые положительные «весовые» коэффициенты, в сумме равные единице, т.е. wk > 0 и . Поскольку, изменяя t от m + 1 до T - m, мы как бы «скользим» по оси времени, то и методы, основанные на формуле (П2.9), принято называть методами скользящей средней (МСС).

    Очевидно, один МСС отличается от другого выбором  параметров m и wk.

    Определение параметров wk основано на следующей процедуре. В соответствии с теоремой Вейерштрасса любая гладкая функция f(x) при самых общих допущениях может быть локально представлена алгебраическим полиномом подходящей степени p. Поэтому берем первые 2m + 1 членов временного ряда x1,…, x2m+1, строим с помощью МНК полином степени p, аппроксимирующий поведение этой начальной части траектории временного ряда, и используем этот полином для определения оценки сглаженного значения f(t) временного ряда в средней (т.е. (m + 1)-й) точке этого отрезка ряда, т.е. полагаем . Затем «скользим» по оси времени на один такт и таким же способом подбираем полином той же степени p к отрезку временного ряда x2,…, xm+2 и определяем оценку сглаженного значения временного ряда в средней точке сдвинутого на единицу отрезка временного ряда, т.е. , и т.д.

    В результате мы найдем оценки для сглаженных значений анализируемого временного ряда при всех t, кроме t = 1,…, m и t = T,… T - m + 1.

    Подбор  наилучшего (в смысле критерия МНК) аппроксимирующего полинома к траектории анализируемого временного ряда приводит к формуле вида (П2.9), причем результат не зависит от того, для какого именно из «скользящих» временных интервалов был осуществлен этот подбор.

    Метод экспоненциально  взвешенного скользящего  среднего (метод Брауна [Brown (1963)]). В соответствии с этим методом оценка сглаженного значения в точке t определяется как решение оптимизационной задачи вида

                 (П2.10)

    где 0 < l < 1. Следовательно, веса lk в критерии Q(f) обобщенного («взвешенного») МНК уменьшаются экспоненциально по мере удаления наблюдений xt-k в прошлое.

    Решение оптимизационной задачи (П2.10) дает:

                   (П2.11)

    В отличие от обычного МСС здесь  скользит только правый конец интервала усреднения и, кроме того, веса экспоненциально уменьшаются по мере удаления в прошлое. Формула (П2.11) дает оценку сглаженного значения временного ряда не в средней, а в правой конечной точке интервала усреднения.

    П2.2.3. Подбор порядка аппроксимирующего  полинома с помощью  метода последовательных разностей

    Реализация  алгоритмических методов выделения неслучайной составляющей временного ряда связана с необходимостью подбора порядка p локально-аппроксимирующего полинома. Эта же задача возникает и при реализации аналитических методов выделения неслучайной составляющей. При решении этой задачи широко используется так называемый метод последовательных разностей членов анализируемого временного ряда, который основан на следующем математическом факте: если анализируемый временной ряд xt содержит в качестве своей неслучайной составляющей алгебраический полином f(t) = q0 + q1t + qptp порядка p, то переход к последовательным разностям порядка p + 1, исключает неслучайную составляющую, оставляя элементы, выражающиеся только через остаточную случайную компоненту et.

    Обсудим способ подбора порядка p полинома, представляющего собой неслучайную составляющую f(t) в разложении анализируемого временного ряда xt. Заметим, прежде всего, что если мы знаем, что среднее значение наблюдаемой случайной величины x равно нулю (Ex = 0), то выборочным аналогом ее дисперсии является величина , где xI, i = 1, 2,…, T - наблюденные значения этой случайной величины. Если же Ex ¹ 0, то выборочным аналогом дисперсии будет статистика , так что величина будет давать в этом случае существенно завышенные оценки для Dx. Возвращаясь к последовательному переходу к разностям Dkxt, k = 1, 2,…, p + 1, отметим, что при всех k < p + 1 средние значения этих разностей будут отличны от нуля, так как будут выражаться не только через остатки et, но и через коэффициенты q0, q1,…, qp и степени t. И только для k ³ p + 1 можно утверждать, что:

    E(Dkxt) = 0 и .

    С учетом этих замечаний можно сформулировать следующее правило подбора порядка сглаживающего полинома p, называемое методом последовательных разностей.

    Последовательно для k = 1, 2,… вычисляем разности Dkxt (t = 1,…, T - k), а также величины

                   (П2.12)

    Анализируем поведение величины в зависимости от k. Величина как функция k будет демонстрировать явную тенденцию к убыванию до тех пор, пока k не достигнет величины p + 1. Начиная с этого момента величина (П2.12) стабилизируется, оставаясь (при дальнейшем увеличении p) приблизительно на одном уровне. Поэтому значение k = k0, начиная с которого величина стабилизируется, и будет давать завышенный на единицу искомый порядок сглаживающего полинома, т.е. p = k0 - 1.

    Этот  метод привлекателен своей простотой, но его практическое применение требует определенной осторожности. Последовательные значения не являются независимыми, и часто обнаруживается тенденция их медленного убывания (а иногда возрастания) без видимой сходимости к постоянному значению. Кроме того, процесс перехода к разностям имеет тенденцию уменьшать относительное значение любого систематического движения, кроме сезонных эффектов с периодом, близким к временному интервалу, так что сходимость отношения не доказывает, что ряд первоначально состоял из полинома плюс случайный остаток, а только то, что он может быть приближенно представлен таким образом. Однако для нас этот метод ценен лишь тем, что он дает верхний предел порядка полинома p, который целесообразно использовать для элиминирования неслучайной составляющей.

    П2.3. Модели стационарных временных  рядов и их идентификация. Модели авторегрессии порядка p (AR(p)-модели)

    В П2.2 рассматривался класс стационарных временных рядов, в рамках которого подбирается модель, пригодная для описания поведения случайных остатков исследуемого временного ряда (1.1.1). Здесь рассматривается набор линейных параметрических моделей из этого класса и методы их идентификации. Таким образом, речь здесь идет не о моделировании временных рядов, а о моделировании их случайных остатков et, получающихся после элиминирования из исходного временного ряда xt его неслучайной составляющей (П2.8). Следовательно, в отличие от прогноза, основанного на регрессионной модели, игнорирующего значения случайных остатков, в прогнозе временных рядов существенно используется взаимозависимость и прогноз самих случайных остатков.

    Введем  обозначения. Так как здесь описывается  поведение случайных остатков, то моделируемый временной ряд обозначим et, и будем полагать, что при всех t его математическое ожидание равно нулю, т.е. Eet, º 0. Временные последовательности, образующие «белый шум», обозначим dt.

    Описание  и анализ, рассматриваемых ниже моделей, формулируется в терминах общего линейного процесса, представимого в виде взвешенной суммы настоящего и прошлых значений белого шума, а именно:

                    (П2.13)

    где b0 = 1 и .

    Таким образом, белый шум представляет собой серию импульсов, в широком классе реальных ситуаций генерирующих случайные остатки исследуемого временного ряда.

    Временной ряд et можно представить в эквивалентном (П2.13) виде, при котором он получается в виде классической линейной модели множественной регрессии, в которой в качестве объясняющих переменных выступают его собственные значения во все прошлые моменты времени:

                    (П2.14)

    При этом весовые коэффициенты p1, p2,… связаны определенными условиями, обеспечивающими стационарность ряда et. Переход от (П2.14) к (П2.13) осуществляется с помощью последовательной подстановки в правую часть (П2.14) вместо et-1, et-2,… их выражений, вычисленных в соответствии с (П2.14) для моментов времени t - 1, t - 2 и т.д.

    Рассмотрим  также процесс смешанного типа, в  котором присутствуют как авторегрессионные  члены самого процесса, так и скользящее суммирование элементов белого шума:

    

    Будем подразумевать, что p и q могут принимать и бесконечные значения, а также то, что в частных случаях некоторые (или даже все) коэффициенты p или b равны нулю.

    Рассмотрим  сначала простейшие частные случаи.

    Модель  авторегрессии 1-го порядка - AR(1) (марковский процесс). Эта модель представляет собой простейший вариант авторегрессионного процесса типа (П2.14), когда все коэффициенты  кроме первого равны нулю. Соответственно, она может быть определена выражением

              et = aet-1 + dt,     (П2.15)

    где a - некоторый числовой коэффициент, не превосходящий по абсолютной величине единицу (|a| < 1), а dt - последовательность случайных величин, образующая белый шум. При этом et зависит от dt и всех предшествующих d, но не зависит от будущих значений d. Соответственно, в уравнении (П2.15) d не зависит от et-1 и более ранних значений e. В связи с этим, d называют инновацией (обновлением).

    Последовательности e, удовлетворяющие соотношению (П2.15), часто называют также марковскими процессами. Это означает, что

                Eet º 0, (П2.16)

              r(et, et±k) = ak, (П2.17)

Информация о работе Эконометрика как наука: Содержание, цели, задачи, направления развития