Автор работы: Пользователь скрыл имя, 20 Сентября 2011 в 17:59, курсовая работа
Проблема отнесения макроэкономических рядов динамики, имеющих выраженный тренд, к одному из двух указанных классов активно обсуждалась в последние два десятилетия в мировой эконометрической и экономической литературе, поскольку траектории TS и DS ряды отличаются друг от друга кардинальным образом.
Введение 3
Глава 1. Обзор процедур, используемых для различения TS и DS рядов 5
П1.1. Критерий Дики-Фуллера 5
П1.2. Расширенный критерий Дики-Фуллера. Выбор количества запаздывающих разностей 8
Глава 2. Проблема анализа временных рядов 9
П2.1. Стационарные временные ряды и их основные характеристики 9
П2.2. Неслучайная составляющая временного ряда и методы его сглаживания 13
П2.3. Модели стационарных временных рядов и их идентификация. Модели авторегрессии порядка p (AR(p)-модели) 23
Заключение 30
Литература 30
Такое
понижение может
При практической реализации указанных двух подходов, когда мы имеем лишь ограниченное количество наблюдений, эти две процедуры могут приводить к совершенно различным выводам относительно необходимого количества запаздываний в правой части статистической модели, оцениваемой в рамках расширенного критерия Дики-Фуллера.
Поиск
модели, адекватно описывающей
Определение П2.1. Ряд xt называется строго стационарным (или стационарным в узком смысле), если совместное распределение вероятностей m наблюдений такое же, как и для m наблюдений , при любых t, и t1,…, tm.
Другими словами, свойства строго стационарного временного ряда не меняются при изменении начала отсчета времени. В частности, при m = 1 из предположения о строгой стационарности временного ряда xt следует, что закон распределения вероятностей случайной величины xt не зависит от t, а значит, не зависят от t и все его основные числовые характеристики, в том числе: среднее значение Ext = m и дисперсия Dxt = s2.
Очевидно, значение m определяет постоянный уровень, относительно которого колеблется анализируемый временной ряд xt, а постоянная величина s характеризует размах этих колебаний. Поскольку закон распределения вероятностей случайной величины xt одинаков при всех t, то он сам и его основные числовые характеристики могут быть оценены по наблюдениям x1,…, xT. В частности: - оценка среднего значения, - оценка дисперсии. (П2.1)
Автоковариационная функция g(t). Значения автоковариационной функции статистически оцениваются по имеющимся наблюдениям временного ряда по формуле где t = 1,… T - 1, а вычислено по формуле (П2.1).
Очевидно, значение автоковариационной функции при t = 0 есть не что иное, как дисперсия временного ряда, и, соответственно,
(П2.2)
Автокорреляционная функция r(t). Одно из главных отличий последовательности наблюдений, образующих временной ряд, от случайной выборки заключается в том, что члены временного ряда являются, вообще говоря, статистически взаимозависимыми. Степень тесноты статистической связи между двумя случайными величинами может быть измерена парным коэффициентом корреляции. Поскольку в нашем случае коэффициент измеряет корреляцию, существующую между членами одного и того же временного ряда, его принято называть коэффициентом автокорреляции. При анализе изменения величины r(t) в зависимости от значения t принято говорить об автокорреляционной функции r(t). График автокорреляционной функции иногда называют коррелограммой. Автокорреляционная функция (в отличие от автоковариационной) безразмерна, т.е. не зависит от масштаба измерения анализируемого временного ряда. Ее значения, по определению, могут колебаться от -1 до +1. Кроме того, из стационарности следует, что r(t) = r(-t), так что при анализе поведения автокорреляционных функций ограничиваются рассмотрением только положительных значений t.
Выборочный аналог автокорреляционной функции определяется формулой
(П2.3)
Существуют общие характерные особенности, отличающие поведение автокорреляционной функции стационарного временного ряда. Другими словами, можно описать в общих чертах схематичный вид коррелограммы стационарного временного ряда. Это обусловлено следующим общим соображением: очевидно, чем больше разнесены во времени члены временного ряда xt и xt+t, тем слабее взаимосвязь этих членов и, соответственно, тем меньше должно быть по абсолютной величине значение r(t). При этом в ряде случаев существует такое пороговое значение r0, начиная с которого все значения будут тождественно равны нулю.
Частная автокорреляционная функция rчаст(t). С помощью этой функции реализуется идея измерения автокорреляции, существующей между разделенными t тактами времени членами временного ряда xt и xt+t, при устраненном опосредованном влиянии на эту взаимозависимость всех промежуточных членов этого временного ряда. Частная автокорреляция 1-го порядка может быть подсчитана с использованием соотношения:
(П2.4)
где m - среднее значение анализируемого стационарного процесса.
Частные автокорреляции более высоких порядков могут быть подсчитаны аналогичным образом по элементам общей корреляционной матрицы R = ||rij||, в которой rij = = r(xi, xj) = r(|i - j|), где i, j = 1,…, T и r(0) = 1. Так, например, частная автокорреляция 2-го порядка определяется по формуле:
(П2.5)
Эмпирические (выборочные) версии автокорреляционных функций получаются с помощью тех же соотношений (П2.4), (П2.5) при замене участвующих в них теоретических значений автокорреляций r(t) их статистическими оценками .
Полученные
таким образом частные
Знание автокорреляционных функций r(t) и rчаст(t) оказывает существенную помощь в решении задачи подбора и идентификации модели анализируемого временного ряда.
Спектральная плотность p(w). Спектральную плотность стационарного временного ряда определяется через его автокорреляционную функцию соотношением
где . Так как r(t) = r(-t), спектральная плотность может быть записана в виде
Следовательно, функция p(w) является гармонической с периодом 2p. График спектральной плотности, называемый спектром, симметричен относительно w = p. Поэтому при анализе поведения p(w) ограничиваются значениями 0 £ w £ p. Спектральная плотность принимает только неотрицательные значения.
Использование свойств этой функции в прикладном анализе временных рядов определяется как «спектральный анализ временных рядов». Применительно к статистическому анализу экономических рядов динамики этот подход не получил широкого распространения, т.к. эмпирический анализ спектральной плотности требует в качестве своей информационной базы либо достаточно длинных стационарных временных рядов, либо нескольких траекторий анализируемого временного ряда (и та и другая ситуация весьма редки в практике статистического анализа экономических рядов динамики).
Для содержательного анализа важно, что величина спектральной плотности характеризует силу взаимосвязи, существующей между временным рядом xt и гармоникой с периодом 2p/w. Это позволяет использовать спектр как средство улавливания периодичностей в анализируемом временном ряду: совокупность пиков спектра определяет набор гармонических компонентов в разложении (1.1.1). Если в ряде содержится скрытая гармоника частоты w, то в нем присутствуют также периодические члены с частотами w/2, w/3 и т.д.
Можно
несколько расширить класс
Определение 2.2. Ряд называется слабо стационарным (или стационарным в широком смысле), если его среднее значение, дисперсия и ковариации не зависят от t.
Принципиальные отличия временного ряда от последовательности наблюдений, образующих случайную выборку, заключаются в следующем:
Это означает, что свойства и правила статистического анализа случайной выборки нельзя распространять на временные ряды. С другой стороны, взаимозависимость членов временного ряда создает свою специфическую базу для построения прогнозных значений анализируемого показателя по наблюденным значениям.
Генезис наблюдений, образующих временной ряд (механизм порождения данных). Речь идет о структуре и классификации основных факторов, под воздействием которых формируются значения временного ряда. Как правило, выделяются 4 типа таких факторов.
Информация о работе Эконометрика как наука: Содержание, цели, задачи, направления развития