Автор работы: Пользователь скрыл имя, 10 Мая 2012 в 21:02, контрольная работа
В свою очередь стратегия представляет собой систему управленческих решений, направленных на реализацию миссии организации и ее преобразование в новое состояние. Эти решения, как правило, имеют долгосрочный характер.
В последнее время широко распространено такое понятие как стратегическое планирование, которое предполагает разработку планов стратегического долгосрочного развития организации.
Введение…………………………………………………………………….3
Глава 1. Балансовые и оптимизационные методы стратегического планирования……………………………………………………………………...4
Балансовый метод планирования…………………………………………4
Оптимизационные методы……………………………………………….14
Глава 2. Стратегия социально-экономического развития Омской области …………………………………………………………………………...49
Заключение………………………………………………………………..82
Список литературы……………………………………………………….83
Таким образом, имеет место следующее равенство:
х1р1 = х1(а11р1+а21р2+…+ аn1рn) + V1.
Разделив это равенство на х1 получаем:
р1 = а11 р1 + а21 р2 + … + аn1 рn + v1,
где v1 = V1/х1 – норма добавленной стоимости (величина добавленной стоимости на единицу выпускаемой продукции). Подобным же образом получаем для остальных отраслей
р2 = а12 р1 + а22 р2 + … + аn2 рn + v2,
рn = а1n р1 + а2n р2 + … + аnn рn + vn.
Найденные равенства могут быть записаны в матричной форме следующим образом: р = АТр + v,
где v = (v1, v2, …, vn)Т – вектор норм добавленной стоимости. Как мы видим, полученные уравнения очень похожи на уравнения модели Леонтьева, с той лишь разницей, что х заменен на р, у – на v, А – на АТ.
Методы оптимизации
В настоящее время менеджер может использовать при принятии решения различные компьютерные и математические средства. В памяти компьютеров держат массу информации, организованную с помощью баз данных и других программных продуктов, позволяющих оперативно ею пользоваться. Экономико-математические и эконометрические модели позволяют просчитывать последствия тех или иных решений, прогнозировать развитие событий. Методы экспертных оценок, о которых пойдет речь ниже, также весьма математизированы и используют компьютеры.
Наиболее часто используются оптимизационные модели принятия решений. Их общий вид таков:
F (X) → max
X Є A
Здесь Х - параметр, который менеджер может выбирать (управляющий параметр). Он может иметь различную природу - число, вектор, множество и т.п. Цель менеджера - максимизировать целевую функцию F (X), выбрав соответствующий Х.. При этом он должен учитывать ограничения X Є A на возможные значения управляющего параметра Х - он должен лежать в множестве А. Ряд примеров оптимизационных задач менеджмента приведен ниже.
Линейное программирование
Среди оптимизационных задач менеджмента наиболее известны задачи линейного программирования, в которых максимизируемая функция F(X) является линейной, а ограничения А задаются линейными неравенствами. Начнем с примера.
Производственная задача.
Цех может производить стулья и столы. На производство стула идет 5 единиц материала, на производство стола - 20 единиц (футов красного дерева). Стул требует 10 человеко-часов, стол - 15. Имеется 400 единиц материала и 450 человеко-часов. Прибыль при производстве стула - 45 долларов США, при производстве стола - 80 долларов США. Сколько надо сделать стульев и столов, чтобы получить максимальную прибыль?
Обозначим: Х1 - число изготовленных стульев, Х2 - число сделанных столов. Задача оптимизации имеет вид:
45 Х1 + 80 Х2 → max ,
5 Х1 + 20 Х2 ≤ 400 ,
10 Х1 + 15 Х2 ≤ 450 ,
Х1 ≥ 0 ,
Х2 ≥ 0 .
В первой строке выписана целевая функция - прибыль при выпуске Х1 стульев и Х2 столов. Ее требуется максимизировать, выбирая оптимальные значения переменных Х1 и Х2 . При этом должны быть выполнены ограничения по материалу (вторая строчка) - истрачено не более 400 футов красного дерева. А также и ограничения по труду (третья строчка) - затрачено не более 450 часов. Кроме того, нельзя забывать, что число столов и число стульев неотрицательны. Если Х1 = 0, то это значит, что стулья не выпускаются. Если же хоть один стул сделан, то Х1 положительно. Но невозможно представить себе отрицательный выпуск - Х1 не может быть отрицательным с экономической точки зрения, хотя с математической точки зрения такого ограничения усмотреть нельзя. В четвертой и пятой строчках задачи и констатируется, что переменные неотрицательны.
Условия производственной задачи можно изобразить на координатной плоскости. Будем по горизонтальной оси абсцисс откладывать значения Х1 , а по вертикальной оси ординат - значения Х2. Тогда ограничения по материалу и последние две строчки оптимизационной задачи выделяют возможные значения (Х1 , Х2) объемов выпуска в виде треугольника (рис.1).
Рис.1. Ограничения по материалу
Таким образом, ограничения по материалу изображаются в виде выпуклого многоугольника, конкретно, треугольника. Этот треугольник получается путем отсечения от первого квадранта примыкающей к началу координат зоны. Отсечение проводится прямой, соответствующей второй строке исходной задачи, с заменой неравенства на равенство. Прямая пересекает ось Х1, соответствующую стульям, в точке (80,0). Это означает, что если весь материал пустить на изготовление стульев, то будет изготовлено 80 стульев. Та же прямая пересекает ось Х2, соответствующую столам, в точке (0,20). Это означает, что если весь материал пустить на изготовление столов, то будет изготовлено 20 столов. Для всех точек внутри треугольника выполнено неравенство, а не равенство - материал останется.
Аналогичным образом можно изобразить и ограничения по труду (рис.2).
Таким образом, ограничения по труду, как и ограничения по материалу, изображаются в виде треугольника. Этот треугольник также получается путем отсечения от первого квадранта примыкающей к началу координат зоны. Отсечение проводится прямой, соответствующей третьей строке исходной задачи, с заменой неравенства на равенство. Прямая пересекает ось Х1, соответствующую стульям, в точке (45,0). Это означает, что если все трудовые ресурсы пустить на изготовление стульев, то будет сделано 45 стульев. Та же прямая пересекает ось Х2, соответствующую столам, в точке (0,30). Это означает, что если всех рабочих поставить на изготовление столов, то будет сделано 30 столов. Для всех точек внутри треугольника выполнено неравенство, а не равенство - часть рабочих будет простаивать.
Мы видим, что очевидного решения нет - для изготовления 80 стульев есть материал, но не хватает рабочих рук, а для производства 30 столов есть рабочая сила, но нет материала, Значит, надо изготавливать и то, и другое. Но в каком соотношении?
Чтобы ответить на этот вопрос,
надо "совместить" рис.1 и рис.2,
получив область возможных
Рис.3. Основная идея линейного программирования.
Таким образом, множество возможных значений объемов выпуска стульев и столов (Х1 , Х2 ), или, в других терминах, множество А, задающее ограничения на параметр управления в общей оптимизационной задаче, представляет собой пересечение двух треугольников, т.е. выпуклый четырехугольник, показанный на рис.3. Три его вершины очевидны - это (0,0), (45,0) и (0,20). Четвертая - это пересечение двух прямых - границ треугольников на рис.1 и рис.2, т.е. решение системы уравнений
5 Х1 + 20 Х2 = 400 ,
10 Х1 + 15 Х2 = 450 .
Из первого уравнения: 5 Х1 = 400 - 20 Х2 , Х1 = 80 - 4 Х2 . Подставляем во второе уравнение:
10 (80 - 4 Х2) + 15 Х2 = 800 - 40Х2 + 15 Х2 = 800 - 25 Х2 = 450,
следовательно, 25 Х2 = 350, Х2 = 14, откуда Х1 = 80 - 4 х 14 = 80 -56 =24. Итак, четвертая вершина четырехугольника - это (24, 14).
Информация о работе Стратегия социально-экономического развития Омской области