Стратегия социально-экономического развития Омской области

Автор работы: Пользователь скрыл имя, 10 Мая 2012 в 21:02, контрольная работа

Описание работы

В свою очередь стратегия представляет собой систему управленческих решений, направленных на реализацию миссии организации и ее преобразование в новое состояние. Эти решения, как правило, имеют долгосрочный характер.
В последнее время широко распространено такое понятие как стратегическое планирование, которое предполагает разработку планов стратегического долгосрочного развития организации.

Содержание работы

Введение…………………………………………………………………….3
Глава 1. Балансовые и оптимизационные методы стратегического планирования……………………………………………………………………...4
Балансовый метод планирования…………………………………………4
Оптимизационные методы……………………………………………….14
Глава 2. Стратегия социально-экономического развития Омской области …………………………………………………………………………...49
Заключение………………………………………………………………..82
Список литературы……………………………………………………….83

Файлы: 1 файл

КОНТРОЛЬНАЯ.docx

— 197.66 Кб (Скачать файл)

Таким образом, имеет место  следующее равенство:

х1р1 = х111р121р2+…+ аn1рn) + V1.

Разделив это равенство  на х1 получаем:

р1 = а11 р1 + а21 р2 + … + аn1 рn + v1,

где v1 = V11 – норма добавленной стоимости (величина добавленной стоимости на единицу выпускаемой продукции). Подобным же образом получаем для остальных отраслей

р2 = а12 р1 + а22 р2 + … + аn2 рn + v2,

рn = а1n р1 + а2n р2 + … + аnn рn + vn.

Найденные равенства могут  быть записаны в матричной форме  следующим образом: р = АТр + v,

где v = (v1, v2, …, vn)Т – вектор норм добавленной стоимости. Как мы видим, полученные уравнения очень похожи на уравнения модели Леонтьева, с той лишь разницей, что х заменен на р, у – на v, А – на АТ.

 

 

 

 

Методы оптимизации  

В настоящее время менеджер может использовать при принятии решения различные компьютерные и математические средства. В памяти компьютеров держат массу информации, организованную с помощью баз  данных и других программных продуктов, позволяющих оперативно ею пользоваться. Экономико-математические и эконометрические модели позволяют просчитывать последствия  тех или иных решений, прогнозировать развитие событий. Методы экспертных оценок, о которых пойдет речь ниже, также  весьма математизированы и используют компьютеры.  

Наиболее часто используются оптимизационные модели принятия решений. Их общий вид таков:

F (X) → max

X Є

Здесь Х - параметр, который менеджер может выбирать (управляющий параметр). Он может иметь различную природу - число, вектор, множество и т.п. Цель менеджера - максимизировать целевую функцию F (X), выбрав соответствующий Х.. При этом он должен учитывать ограничения X Є A на возможные значения управляющего параметра Х - он должен лежать в множестве А. Ряд примеров оптимизационных задач менеджмента приведен ниже.

Линейное  программирование 

Среди оптимизационных задач  менеджмента наиболее известны задачи линейного программирования, в которых  максимизируемая функция F(X) является линейной, а ограничения А задаются линейными неравенствами. Начнем с примера.  

Производственная задача.

 Цех может производить стулья и столы. На производство стула идет 5 единиц материала, на производство стола - 20 единиц (футов красного дерева). Стул требует 10 человеко-часов, стол - 15. Имеется 400 единиц материала и 450 человеко-часов. Прибыль при производстве стула - 45 долларов США, при производстве стола - 80 долларов США. Сколько надо сделать стульев и столов, чтобы получить максимальную прибыль?  

Обозначим: Х1 - число изготовленных стульев, Х2 - число сделанных столов. Задача оптимизации имеет вид:

45 Х1 + 80 Х2  → max ,

5 Х1 + 20 Х≤ 400 ,

10 Х1 + 15 Х≤ 450 ,

Х1  ≥ 0 ,

Х≥ 0 .

В первой строке выписана целевая  функция - прибыль при выпуске Х1 стульев и Х2 столов. Ее требуется максимизировать, выбирая оптимальные значения переменных Х1 и Х2 . При этом должны быть выполнены ограничения по материалу (вторая строчка) - истрачено не более 400 футов красного дерева. А также и ограничения по труду (третья строчка) - затрачено не более 450 часов. Кроме того, нельзя забывать, что число столов и число стульев неотрицательны. Если Х1 = 0, то это значит, что стулья не выпускаются. Если же хоть один стул сделан, то Х1 положительно. Но невозможно представить себе отрицательный выпуск - Х1 не может быть отрицательным с экономической точки зрения, хотя с математической точки зрения такого ограничения усмотреть нельзя. В четвертой и пятой строчках задачи и констатируется, что переменные неотрицательны.  

Условия производственной задачи можно изобразить на координатной плоскости. Будем по горизонтальной оси абсцисс  откладывать значения Х1 , а по вертикальной оси ординат - значения Х2. Тогда ограничения по материалу и последние две строчки оптимизационной задачи выделяют возможные значения (Х1 , Х2) объемов выпуска в виде треугольника (рис.1).

Рис.1. Ограничения по материалу  

Таким образом, ограничения  по материалу изображаются в виде выпуклого многоугольника, конкретно, треугольника. Этот треугольник получается путем отсечения от первого квадранта  примыкающей к началу координат  зоны. Отсечение проводится прямой, соответствующей второй строке исходной задачи, с заменой неравенства  на равенство. Прямая пересекает ось Х1, соответствующую стульям, в точке (80,0). Это означает, что если весь материал пустить на изготовление стульев, то будет изготовлено 80 стульев. Та же прямая пересекает ось Х2, соответствующую столам, в точке (0,20). Это означает, что если весь материал пустить на изготовление столов, то будет изготовлено 20 столов. Для всех точек внутри треугольника выполнено неравенство, а не равенство - материал останется. 

Аналогичным образом можно  изобразить и ограничения по труду (рис.2).  

Таким образом, ограничения  по труду, как и ограничения по материалу, изображаются в виде треугольника. Этот треугольник также получается путем отсечения от первого квадранта  примыкающей к началу координат  зоны. Отсечение проводится прямой, соответствующей третьей строке исходной задачи, с заменой неравенства  на равенство. Прямая пересекает ось Х1, соответствующую стульям, в точке (45,0). Это означает, что если все трудовые ресурсы пустить на изготовление стульев, то будет сделано 45 стульев. Та же прямая пересекает ось Х2, соответствующую столам, в точке (0,30). Это означает, что если всех рабочих поставить на изготовление столов, то будет сделано 30 столов. Для всех точек внутри треугольника выполнено неравенство, а не равенство - часть рабочих будет простаивать.

 

Мы видим, что очевидного решения нет - для изготовления 80 стульев есть материал, но не хватает  рабочих рук, а для производства 30 столов есть рабочая сила, но нет  материала, Значит, надо изготавливать и то, и другое. Но в каком соотношении?  

Чтобы ответить на этот вопрос, надо "совместить" рис.1 и рис.2, получив область возможных решений, а затем проследить, какие значения принимает целевая функция на этом множестве (рис.3).

Рис.3. Основная идея линейного  программирования. 

Таким образом, множество  возможных значений объемов выпуска  стульев и столов (Х1 , Х2 ), или, в других терминах, множество А, задающее ограничения на параметр управления в общей оптимизационной задаче, представляет собой пересечение двух треугольников, т.е. выпуклый четырехугольник, показанный на рис.3. Три его вершины очевидны - это (0,0), (45,0) и (0,20). Четвертая - это пересечение двух прямых - границ треугольников на рис.1 и рис.2, т.е. решение системы уравнений 

5 Х1 + 20 Х= 400 ,

10 Х1 + 15 Х= 450 .

Из первого уравнения: 5 Х= 400 - 20 Х2 , Х= 80 - 4 Х2 . Подставляем во второе уравнение:

10 (80 - 4 Х2) + 15 Х= 800 - 40Х + 15 Х= 800 - 25 Х2 = 450,

следовательно, 25 Х2 = 350, Х= 14, откуда Х1 = 80 - 4 х 14 = 80 -56 =24. Итак, четвертая вершина четырехугольника - это (24, 14). 

Информация о работе Стратегия социально-экономического развития Омской области