Стратегия социально-экономического развития Омской области

Автор работы: Пользователь скрыл имя, 10 Мая 2012 в 21:02, контрольная работа

Описание работы

В свою очередь стратегия представляет собой систему управленческих решений, направленных на реализацию миссии организации и ее преобразование в новое состояние. Эти решения, как правило, имеют долгосрочный характер.
В последнее время широко распространено такое понятие как стратегическое планирование, которое предполагает разработку планов стратегического долгосрочного развития организации.

Содержание работы

Введение…………………………………………………………………….3
Глава 1. Балансовые и оптимизационные методы стратегического планирования……………………………………………………………………...4
Балансовый метод планирования…………………………………………4
Оптимизационные методы……………………………………………….14
Глава 2. Стратегия социально-экономического развития Омской области …………………………………………………………………………...49
Заключение………………………………………………………………..82
Список литературы……………………………………………………….83

Файлы: 1 файл

КОНТРОЛЬНАЯ.docx

— 197.66 Кб (Скачать файл)

Итак, согласно гипотезе линейности имеем

хij = аijхi (i, j = 1, …, n). (1.2)

Коэффициенты аij называют коэффициентами прямых затрат (коэффициентами материалоемкости).

Подставляя соотношения (1.2) в уравнение баланса (1.1), получаем систему n линейных уравнений относительно переменных х1, х2,…, хn:

х1 = а11 х1 + а12 х2 + … а1n хn + у1,

х2 = а21 х1 + а22 х2 + … а2n хn + у2,

…………………………………..

хn = аn1 х1 + аn2 х2 + … аnn хn + уn,

или, в матричной записи,

х = Ах + у, (1.3)

где а11 а12 … а1n х 1 у1

А = а21 а22 … а2n , х = х 2 , у = у2 .

……………. … …

аn1 аn2 … аnn хn уn

Вектор х называется вектором валового выпуска, вектор у – вектором конечного потребления, а матрица  А – матрицей прямых затрат. Соотношение (1.3) называется уравнением линейного  межотраслевого баланса. Вместе с изложенной интерпретацией матрицы А и векторов х и у это соотношение называют также моделью Леонтьева.

 

Продуктивные  модели Леонтьева

Определение. Матрица А  ≥ 0 называется продуктивной, если для  любого вектора у ≥ 0 существует решение х ≥ 0 уравнения

х = Ах + у (2.4)

В этом случае модель Леонтьева, определяемая матрицей А, тоже называется продуктивной. Другими словами, модель продуктивна, если любое конечное потребление  у можно обеспечить при подходящем валовом выпуске х.

Уравнение Леонтьева (2.4) можно  записать следующим образом:

(Е – А)х = у, (2.5)

где Е – единичная матрица. Возникает, естественно, вопрос об обращении  матрицы Е – А. Понятно, что  если обратная матрица (Е – А)-1 существует, то из (2.5) вытекает

х = (Е – А)-1 у. (2.6)

Теорема 1 (первый критерий продуктивности).

Матрица А ≥ 0 продуктивна  только тогда, когда матрица (Е –  А)-1 существует и неотрицательна.

Доказательство.

Если матрица (Е – А)-1 существует и неотрицательна, то из (2.6) сразу же следует продуктивность матрицы А.

Обратно, пусть матрица  А продуктивна. Рассмотрим следующие  системы уравнений:

(Е – А)х = е1, (Е – А)х = е2, …, (Е – А)х = еn ,

Где е1, е2, …, еn – столбцы единичной матрицы. Каждая из этих систем в силу продуктивности матрицы А имеет неотрицательное решение, т.е. существуют такие векторы (столбцы) с1 ≥ 0, с2 ≥ 0, …, сn ≥ 0, что

(Е – А)с1 = е1, (Е – А)с2 = е2, …, (Е – А)сn = еn (2.7)

Обозначим через С матрицу, составленную из столбцов с1 с 2, …, с n. Тогда вместо n равенств (2.7) можно написать одно:

(Е – А)С = Е.

Следовательно, матрица Е-А  имеет обратную С, причем С ≥ 0.

Теорема доказана.

Теорема 2 (второй критерий продуктивности).

Неотрицательная квадратная матрица А продуктивна тогда  и только тогда, когда её число  Фробениуса меньше единицы.

Доказательство.

Пусть неотрицательная матрица  А продуктивна. Тогда для любого неотрицательного вектора у существует решение х ≥ 0 уравнения (2.4) Пусть  у > 0, тогда, очевидно, х > 0. Умножив  равенство (2.4) слева на левый вектор Фробениуса рТА и учитывая, что

рТАА = λАрТА, (2.8)

получим

λ А ТА х) + рТА у = рТА х,

или

(1 – λА)(рТА х) = рТА у.

Так как рТА ≥ 0 и у ≥ 0, х ≥ 0, то рТАу > 0, рТАх > 0. Поэтому из последнего равенства вытекает, что λА < 1.

Обратно, пусть неотрицательная  матрица А имеет число Фробениуса λА 1. Покажем, что она продуктивна. Возьмем неотрицательный вектор у и покажем, что у системы (2.4) существует решение х ≥ 0.

Рассмотрим следующую  неотрицательную матрицу размера (n + 1)(n+ 1):     а11 а12 … а1n у1

а21 а22 … а2n у2

А = …………….

аn1 аn2 … аnn уn

0 0 … 0 1

Где аij – элементы матрицы А и у1, …, уn – координаты вектора у. В более компактной форме матрицу можно записать так:

А = А у

0 1

Умножая эту матрицу слева  на вектор рТ = (0, …, 0,1), легко убедиться,

Следовательно, одним из собственных значений матрицы А  является вектор λ = 1.

Пусть вектор Х = (х1 , …, хn , хn+1 ) = (х , хn+1) является собственным вектором матрицы А, т.е. АХ = λХ. В силу определения матрицы А эторавносильно тому, что

А у х = λ х

0 1 хn+1 хn+1

или

Ах + у хn+1 = λх,

хn+1 = λ хn+1. (2.9)

Если λ ≠ 1, то из второго соотношения системы (2.9) следует, что хn+1 = 0, в силу чего первое уравнение имеет вид Ах = λх. Следовательно, λ – собственное значение матрицы А и, по нашему предположению ‌‌‌|λ| < 1. Таким образом, λА = 1 является положительным и максимальным по модулю собственным значением, следовательно является числом Фробениуса. По теореме Фробениуса-Перрона у матрицы А существует неотрицательный собственный вектор хА = ( хА , хn+1), соответствующий λА =1. Очевидно, что хn+1 ≠ 0, так как в противном случае из (2.9) следовало бы, что Ах = х. А это противоречит тому, что число Фробениуса λА < 1. Поэтому мы можем считать, что хn+1 = 1. В силу того, что хn+1 = 1, равенство (2.9) принимает вид

АхА + у = хА.

Поскольку хА = (хА, хn+1) ≥ 0, то хА ≥ 0.

Следовательно, матрица А  продуктивна.

Следствие.

Если для неотрицательной  матрицы А и некоторыого положительного вектора у уравнение (2.4) имеет  неотрицательное решение х, то матрица  А продуктивна.

Доказательство.

Как было уже показано, из существования положительного решения  у уравнения (2.4) следует, что λА < 1. На основании теоремы Фробениуса матрица А продуктивна.

Теорема 3 (третий критерий продуктивности).

Неотрицательная матрица  А продуктивна тогда и только тогда, когда сходится бесконечный  ряд

Е + А + А² + … (2.10)

Доказательство.

Пусть сходится ряд (2.10). Согласно лемме его сема равна (Е – А)-1. При этом сумма указанного ряда будет неотрицательна, поскольку все слагаемые ряда неотрицательны. Итак, матрица (Е – А)-1 существует и неотрицательна. Отсюда по теореме 1.3 следует продуктивность А.

Обратное утверждение (если А продуктивна, то ряд (2.10) сходится) доказывать не будем.

         Модель равновесных цен

Рассмотрим теперь балансовую модель, двойственную к модели Леонтьева  – так называемую модель равновесных  цен. Пусть, как и прежде, А –  матрица прямых затрат, х = (х1 , х2, …, хn)Т – вектор валового выпуска. Обозначим через р = (р1 , р2 , …, рn)Т вектор цен, i координата которого равна цене единицы продукции i-й отрасли; тогда, например, первая отрасль получит доход, равный р1 х1. Часть своего дохода эта отрасль потратит на закупку продукции у других отраслей. Так, для выпуска единицы продукции, ей необходима продукция первой отрасли в объеме а11, второй отрасли в объеме а21, и т.д., n-й отрасли в объеме аn1. На покупку этой продукции ею будет затрачена сумма, равная а11 р1 + а21 р2 + … + аn1 рn. Следовательно, для выпуска продукции в объеме х1 первой отрасли необходимо потратить на закупку продукции других отраслей сумму, равную х111р121р2+…+ аn1рn). Оставшуюся часть дохода, называемую добавленной стоимостью, мы обозначим через V1 (эта часть дохода идет на выплату зарплаты и налогов, предпринимательскую прибыль и инвестиции).

Информация о работе Стратегия социально-экономического развития Омской области