Автор работы: Пользователь скрыл имя, 10 Мая 2012 в 21:02, контрольная работа
В свою очередь стратегия представляет собой систему управленческих решений, направленных на реализацию миссии организации и ее преобразование в новое состояние. Эти решения, как правило, имеют долгосрочный характер.
В последнее время широко распространено такое понятие как стратегическое планирование, которое предполагает разработку планов стратегического долгосрочного развития организации.
Введение…………………………………………………………………….3
Глава 1. Балансовые и оптимизационные методы стратегического планирования……………………………………………………………………...4
Балансовый метод планирования…………………………………………4
Оптимизационные методы……………………………………………….14
Глава 2. Стратегия социально-экономического развития Омской области …………………………………………………………………………...49
Заключение………………………………………………………………..82
Список литературы……………………………………………………….83
Задача о максимальном потоке.
Как (т.е. по каким маршрутам) послать максимально возможное количество грузов из начального пункта в конечный пункт, если пропускная способность путей между пунктами ограничена?
Для решения этой задачи каждой дуге ориентированного графа, соответствующего транспортной системе, должно быть сопоставлено число - пропускная способность этой дуги. Рассмотрим пример (рис.8).
Рис.8. Исходные данные к задаче о максимальном потоке
Исходные данные о транспортной системе, например, внутризаводской, приведенные на рис.8, можно также задать таблицей (табл.5).
Таблица 5.
Исходные данные к задаче о максимальном потоке
Пункт отправления |
Пункт назначения |
Пропускная способность |
0 |
1 |
2 |
0 |
2 |
3 |
0 |
3 |
1 |
1 |
2 |
4 |
1 |
3 |
1 |
1 |
4 |
3 |
2 |
3 |
1 |
2 |
4 |
2 |
3 |
4 |
2 |
Решение задачи о максимальном потоке может быть получено из следующих соображений.
Очевидно, максимальная пропускная способность транспортной системы не превышает 6, поскольку не более 6 единиц грузов можно направить из начального пункта 0, а именно, 2 единицы в пункт 1, 3 единицы в пункт 2 и 1 единицу в пункт 3.
Далее надо добиться, чтобы
все 6 вышедших из пункта 0 единиц груза
достигли конечного пункта 4. Очевидно,
2 единицы груза, пришедшие в пункт
1, можно непосредственно
Итак, максимальная пропускная
способность рассматриваемой
Решение можно представить в виде таблицы (табл.6).
Таблица 6.
Решение задачи о максимальном потоке
Пункт отправления |
Пункт назначения |
План перевозок |
Пропускная способность |
0 |
1 |
2 |
2 |
0 |
2 |
3 |
3 |
0 |
3 |
1 |
1 |
1 |
2 |
0 |
4 |
1 |
3 |
0 |
1 |
1 |
4 |
2 |
3 |
2 |
3 |
1 |
1 |
2 |
4 |
2 |
2 |
3 |
4 |
2 |
2 |
Задача линейного
F → max ,
Х01 + Х02 + Х03 = F (0)
- Х01 + Х12 + Х13 + Х14 = 0 (1)
- Х02 - Х12 + Х23 + Х24 = 0 (2)
- Х03 - Х13 - Х23 + Х34 = 0 (3)
- Х14 - Х24 - Х34 = - F (4)
Х01 ≤ 2
Х02 ≤ 3
Х03 ≤ 1
Х12 ≤ 4
Х13 ≤ 1
Х14 ≤ 3
Х23 ≤ 1
Х24 ≤ 2
Х34 ≤ 2
ХКМ ≥ 0 , К, М = 0, 1, 2, 3, 4, F ≥ 0 .
Здесь F - целевая функция, условие (0) описывает вхождение грузов в транспортную систему. Условия (1) - (3) задают балансовые соотношения для узлов 1- 3 системы. Другими словами, для каждого из внутренних узлов входящий поток грузов равен выходящему потоку, грузы не скапливаются внутри и системы и не "рождаются" в ней. Условие (4) - это условие "выхода" грузов из системы. Вместе с условием (0) оно составляет балансовое соотношение для системы в целом ("вход" равен "выходу"). Следующие девять неравенств задают ограничения на пропускную способность отдельных "веток" транспортной системы. Затем в системе ограничений задачи линейного программирования указана неотрицательность объемов перевозок и целевой функции. Ясно, что последнее неравенство вытекает из вида целевой функции (соотношения (0) или (4)) и неотрицательности объемов перевозок. Однако последнее неравенство несет некоторую общую информацию - через систему может быть пропущен либо положительный объем грузов, либо нулевой (например, если внутри системы происходит движение по кругу), но не отрицательный (он не имеет экономического смысла, но формальная математическая модель об этом "не знает").
О многообразии оптимизационных задач.
В различных проблемах
принятия решений возникают самые
разнообразные задачи оптимизации.
Для их решения применяются те
или иные методы, точные или приближенные.
Задачи оптимизации часто используются
в теоретико-экономических
Кроме затронутых выше методов решения задач оптимизации, напомним о том, что гладкие функции оптимизируют, приравнивая 0 производную (для функций нескольких переменных - частные производные). При наличии ограничений используют множители Лагранжа. Эти методы обычно излагаются в курсах высшей математики и потому опущены здесь.
Представляют интерес
задачи оптимизации с нечеткими
переменными [5], а также задачи оптимизации,
возникающие в эконометрике [6]. Например,
метод наименьших квадратов, разобранный
в следующей главе, основан на
решении задачи оптимизации. Итоговое
мнение комиссии экспертов часто
вычисляют как решение задачи
оптимизации (глава 3.4). Конкретные виды
задач оптимизации и методы их
решения рассматриваются в
Задачи по методам принятия решений
1. Изобразите на плоскости ограничения задачи линейного программирования и решите (графически) эту задачу:
400 W1 + 450 W2 → min ,
5 W1 + 10 W2 ≥ 45,
20 W1 + 15 W2 ≥ 80,
Информация о работе Стратегия социально-экономического развития Омской области