Автор работы: Пользователь скрыл имя, 10 Мая 2012 в 21:02, контрольная работа
В свою очередь стратегия представляет собой систему управленческих решений, направленных на реализацию миссии организации и ее преобразование в новое состояние. Эти решения, как правило, имеют долгосрочный характер.
В последнее время широко распространено такое понятие как стратегическое планирование, которое предполагает разработку планов стратегического долгосрочного развития организации.
Введение…………………………………………………………………….3
Глава 1. Балансовые и оптимизационные методы стратегического планирования……………………………………………………………………...4
Балансовый метод планирования…………………………………………4
Оптимизационные методы……………………………………………….14
Глава 2. Стратегия социально-экономического развития Омской области …………………………………………………………………………...49
Заключение………………………………………………………………..82
Список литературы……………………………………………………….83
Линейное программирование имеет дело с числовыми переменными. Если вспомнить общую постановку оптимизационной задачи, приведенную в начале главы, то Х – вектор в конечномерном линейном пространстве, А – многогранник в таком пространстве. Рассмотрим несколько задач оптимизации, в которых Х и А имеют иную математическую природу.
Целочисленное программирование
Задачи оптимизации, в которых переменные принимают целочисленные значения, относятся к целочисленному программированию. Рассмотрим несколько таких задач.
Задача о выборе оборудования.
На приобретение оборудования для нового участка цеха выделено 20000 долларов США. При этом можно занять площадь не более 38 м2. Имеется возможность приобрести станки типа А и станки типа Б. При этом станки типа А стоят 5000 долларов США, занимают площадь 8 м2 (включая необходимые технологические проходы) и имеют производительность 7 тыс. единиц продукции за смену. Станки типа Б стоят 2000 долларов США, занимают площадь 4 м2 и имеют производительность 3 тыс. единиц продукции за смену. Необходимо рассчитать оптимальный вариант приобретения оборудования, обеспечивающий при заданных ограничениях максимум общей производительности участка.
Пусть Х - количество станков типа А, а У - количество станков типа Б, входящих в комплект оборудования. Требуется выбрать комплект оборудования так, чтобы максимизировать производительность С участка (в тыс. единиц за смену):
С = 7 Х + 3 У → max .
При этом должны быть выполнены следующие ограничения:
по стоимости (в тыс. долларов США)
5 Х + 2 У ≤ 20,
по занимаемой площади (в м2 )
8 Х + 4 У ≤ 38,
а также вновь появляющиеся специфические ограничения по целочисленности, а именно,
Х ≥ 0 , У ≥ 0 , Х и У - целые числа.
Сформулированная
Если Х = 4, то из ограничения по стоимости следует, что У = 0, а потому С = 7 Х = 28.
Если Х= 3, то из первого ограничения вытекает, что У ≤ 2, из второго У ≤ 3. Значит, максимальное С при условии выполнения ограничений достигается при У =2, а именно С = 21 + 6 = 27.
Если Х= 2, то из первого ограничения следует, что У ≤ 5, из второго также У ≤ 5. Значит, максимальное С при условии выполнения ограничений достигается при У =5, а именно С = 14 + 15 = 29.
Если Х= 1, то из первого ограничения имеем У ≤ 7, из второго также У ≤ 7. Значит, максимальное С при условии выполнения ограничений достигается при У = 7, а именно С = 7 + 21 = 28.
Если Х= 0, то из первого ограничения вытекает У ≤ 10, из второго У ≤ 9. Значит, максимальное С при условии выполнения ограничений достигается при У = 9, а именно, С = 27.
Все возможные случаи рассмотрены. Максимальная производительность С = 29 (тысяч единиц продукции за смену) достигается при Х = 2, У = 5. Следовательно, надо покупать 2 станка типа А и 5 станков типа Б.
Задача о ранце.
Общий вес ранца заранее ограничен. Какие предметы положить в ранец, чтобы общая полезность отобранных предметов была максимальна? Вес каждого предмета известен.
Есть много эквивалентных
формулировок. Например, можно вместо
ранца рассматривать
С точки зрения экономики
предприятия и организации
Перейдем к математической постановке. Предполагается, что имеется n предметов, и для каждого из них необходимо решить, класть его в ранец или не класть. Для описания решения вводятся булевы переменные Хk , k = 1,2,…, n (т.е. переменные, принимающие два значения, а именно, 0 и 1). При этом Хk = 1, если предмет размещают в ранце, и Хk = 0, если нет, k = 1,2,…, n. Для каждого предмета известны две константы: Аk - вес k-го предмета, и Сk - полезность k-го предмета, k = 1,2,…, n . Максимально возможную вместимость ранца обозначим В. Оптимизационная задача имеет вид
C1 Х1 + С2 Х2 + С3 Х3 + …. + СnХn → max ,
А1 Х1 + А2 Х2 + А3 Х3 + …. + АnХn ≤ В.
В отличие от предыдущих задач, управляющие параметры Хk , k = 1,2,…, n , принимают значения из множества, содержащего два элемента - 0 и 1.
К целочисленному программированию относятся задачи размещения (производственных объектов), теории расписаний, календарного и оперативного планирования, назначения персонала и т.д. (см., например, монографию [2]).
Укажем два распространенных метода решения задач целочисленного программирования
Метод приближения непрерывными задачами.
В соответствии с ним сначала
решается задача линейного программирования
без учета целочисленности, а
затем в окрестности
Методы направленного перебора.
Из них наиболее известен метод ветвей и границ. Суть метода такова. Каждому подмножеству Х множества возможных решений Х0 ставится в соответствие число - "граница" А(Х). При решении задачи минимизации необходимо, чтобы А(Х1) ≥ А(Х2), если Х1 входит в Х2 или совпадает с Х2 .
Каждый шаг метода ветвей и границ состоит в делении выбранного на предыдущем шаге множества ХС на два - Х1С и Х2С. При этом пересечение Х1С и Х2С пусто, а их объединение совпадает с ХС . Затем вычисляют границы А(Х1С ) и А(Х2С) и выделяют "ветвь" ХС+1 - то из множеств Х1С и Х2С, для которого граница меньше. Алгоритм прекращает работу, когда диаметр вновь выделенной ветви оказывается меньше заранее заданного малого числа
Информация о работе Стратегия социально-экономического развития Омской области