Автор работы: Пользователь скрыл имя, 25 Марта 2011 в 20:03, курсовая работа
Состав нефтей и газов зависит от геологических и геохимических условий образования и залегания нефтей. Поэтому изучение химического состава нефтей имеет очень большое значение для понимания геохимических процессов превращения нефтей в земной коре. Состав нефтей определяет, в свою очередь, способы их добычи и транспорта, направления и особенности их переработки для получения разнообразных продуктов.
В настоящее время прямая перегонка нефти осуществляется в виде непрерывного процесса в так называемых атмосферно-вакуумных трубчатых установках (рис. 4), основными аппаратами которых являются трубчатая печь и ректификационная колонна.
Рис. 4. Схема атмосферно-вакуумной устаноски для перегонки
нефти:
1,5 - трубчатые печи; 2,6 – ректификационные колонны; 3 – теплообменники;
4 - конденсаторы
Основы процесса сводятся к тому, что нефть, нагретая до 350 0С в трубчатой печи, поступает в среднюю часть нижней секции ректификационной колонны, работающей под атмосферным давлением. При этом её бензиновая, керосиновая и другие фракции, кипящие в интервале температур от 40 до 300 0С, оказываются перегретыми по отношению к нефти, имеющей температуру 350 0С, и поэтому сразу превращаются в пар. В ректификационной колонне пары этих низкокипящих фракций устремляются вверх, а высококипящий мазут стекает вниз. Это приводит к неодинаковой температуре по высоте колонны. В её нижней части температура самая высокая, а в верхней - самая низкая.
Поднимающиеся
вверх пары углеводородов при
соприкосновении с более
Рис. 5. Схема устройства и работы ректификационной тарельчатой колонны:
1
– тарелки; 2 –
патрубки; 3 – колпачки; 4
– сливные стаканы; 5
– стенки колонны
На такой тарелке поднимающиеся сверху пары пробулькивают в жидкость из под колпачков, интенсивно перемешивая и превращая её в пенный слой. Высококипящие углеводороды при этом охлаждаются, конденсируются и остатки в жидкости, в то время как растворённые в жидкости низкокипящие углеводороды, нагреваясь, переходят в пар. Пары поднимаются на верхнюю тарелку, а жидкость перетекает на нижнюю. Там процесс конденсации и испарения снова повторяется. Обычно в ректификационной колонне, имеющей высоту 35-45 м, устанавливается до 40 тарелок. Достигаемая при этом степень разделения позволяет конденсировать и отбирать фракции по высоте колонны в строго определённом интервале температур. Так, при 300-350 0С конденсируется и отбирается соляровое масло, при температуре 200-300 0С - керосиновая фракция, при температуре 160-200 0С - лигроиновая фракция. Не сконденсировавшиеся пары бензиновой фракции с температурой 180 0С выводятся через верхнюю часть колонны, где охлаждаются и конденсируются в специальном теплообменнике. Часть охлаждённой бензиновой фракции возвращается на орошение верхней тарелки колонны. Это делается для того, чтобы соприкосновением горячих паров с охлаждённой бензиновой фракцией тщательнее отделить легколетучие углеводороды и сконденсировать примеси менее летучих, стекающих вниз. Такая мера позволяет получить более чистый и более качественный бензин с октановым числом от 50 до 78.
При более тщательной разгонке бензиновая фракция может быть разделена на газолин (петролейный эфир) - 40-70 0С, собственно бензин - 70-120 0С и лигроин 120-180 0С.
В самой нижней части ректификационной колонны собирается мазут. В зависимости от содержания в нём сернистых соединений он может служить котельным топливом либо сырьём для получения смазочных масел или дополнительных количеств моторного топлива и нефтяных газов. Обычно при содержании в мазуте серы более 1% его используют как высококалорийное котельное топливо, и на этой стадии перегонку прекращают, сводя процесс к одностадийному. При необходимости получения из мазута смазочных масел его подвергают дальнейшей перегонке во второй ректификационной колонне, работающей под вакуумом. Такая схема называется двухстадийной. Двухстадийный процесс отличается от одностадийного меньшим расходом топлива и более высокой интенсивностью работы аппаратуры, что достигается использованием вакуума и более высокой степенью утилизации тепла. Использование вакуума на второй стадии перегонки предотвращает расщепление тяжёлых углеводородов, снижает температуру кипения мазута и тем самым уменьшает расход топлива на его нагревание.
Сущность второй стадии сводится к нагреванию мазута раскалёнными газами до 420 0С в трубчатой печи и к последующей его разгонке в ректификационной колонне. В результате образуется до 30 % гудрона и до 70 % масляных компонентов, являющихся сырьём для получения смазочных масел. Примерный выход и температура отбора масляных фракций мазута приведены в табл. 15.
Для
большей экономии тепла и улучшения
технико-экономических показателей работы
атмосферно-вакуумных установок нагревание
нефти до 350 0С ведут в два этапа.
Таблица 15
Фракции перегонки мазута
Фракция | Температура отбора, 0С | Примерный выход, % |
Веретённая | 230-250 | 10-12 |
Машинная | 260-305 | 5 |
Цилинровая
лёгкая тяжёлая |
315-325 350-370 |
3 7 |
Остаток (гудрон) | 350-370 | 27-30 |
В
начале её предварительно нагревают
до 170-175 0С теплом продуктов перегонки
(последние при этом охлаждаются), а затем
в трубчатой печи теплом раскалённых газов.
Такая утилизация тепла позволяет сократить
расход топлива на проведение процесса
и снизить себестоимость первичной переработки.
3.3.
Химические процессы
переработки нефти
В результате фракционной разгонки нефти из неё удаётся выделить 5-25 % бензина и до 20 % керосина. Сравнительно малый выход этих продуктов и постоянно возрастающая в них потребность послужили причиной широкого применения химических, так называемых деструктивных методов переработки нефти (крекинга, пиролиза, риформинга), позволяющих расщеплением больших молекул получить из нефтяных фракций дополнительные количества светлых нефтепродуктов с улучшенными свойствами. Количество получаемого из нефти бензина увеличивают, подвергая часть менее необходимых нефтепродуктов (мазут, газойль, соляровое масло, полугудрон и др.) крекингу, - расщеплению их при нагревании до 420-550 0С, часто в присутствии катализаторов. Это позволяет повысить общий выход бензина в несколько раз и довести его до 40-50% и даже до 70%.
Впервые
возможность технического использования
процесса деструктивного разложения нефти
и нефтепродуктов была установлена исследованиями
Д.И. Менделеева и А.А. Летнего. В 1890 г. В.Г.
Шухов разработал схему процесса и конструкцию
основных аппаратов для проведения крекинга
под давлением. Применение крекинга началось
лишь с 1913 г. в США, а в СССР - в годы первой
пятилетки.
3.3.1.
Термический крекинг,
пиролиз и коксование
Простейшим промышленным методом расщепления тяжёлых углеводородов нефти в лёгкие является термический крекинг - расщепление больших молекул этих углеводородов под действием тепла и образование меньших молекул более лёгких углеводородов. Однако расщепление молекул в процессе крекинга протекает хаотически и не может быть проведено направленно с получением углеводородов заданного строения. Частично это достигается при ведении процесса в присутствии специально подобранных катализаторов, т.е. при каталитическом крекинге. Дальнейшие преобразования строения углеводородов, полученных в результате крекинга, осуществляются в процессах риформинга.
Крекинг является в химическом отношении сложным процессом, так как сырьё представляет смесь многих углеводородов, и они подвергаются превращениям в различных направлениях.
Однако
можно установить некоторые закономерности
в поведении отдельных классов
углеводородов при высоких
Алканы при высоких температурах в основном подвергаются реакции расщепления с разрывом связи между углеродными атомами. В результате расщепления и одновременно происходящего перемещения атомов водорода образуются новые молекулы предельных и непредельных углеводородов с более низкой молекулярной массой:
У низших алканов наблюдается также дегидрирование и распад с разрывом связи у конца углеродной цепи.
Изоалканы термически менее
При крекинге циклоалканов происходят реакции:
Арены с углеводородными цепями в условиях крекинга деалкилируются. При этом происходит образование простых аренов и алкенов, например, из этилбензола образуются бензол и этилен:
Помимо этого, у аренов протекают реакции конденсации, преимущественно с участием непредельных углеводородов, что постепенно приводит к образованию углеводородов с весьма большим числом бензольных колец и малым содержанием водорода, т. е. к образованию кокса.
Непредельные углеводороды, образующиеся при крекинге, могут в соответствующих условиях полимеризоваться или отщеплять мелкие молекулы более высокой непредельности:
Кроме того, они могут вступать в реакции алкилирования, изомеризации, циклизации как с друг другом, так и с другими углеводородами с образованием углеводородов изостроения, нафтенов и аренов. Повышение температуры снижает прочность углеводородов, причём термическая устойчивость алканов падает при переходе к высшим членам гомологического ряда. Следовательно, при нагревании в первую очередь происходит расщепление углеводородов с длинными цепями.
С повышением температуры место разрыва связи С-С сдвигается к краю цепи с образованием углеводородов с короткими цепями вплоть до метана. Однако и метан при температурах выше 820 0C начинает разлагаться на углерод и водород. Таким образом, повышение температуры увеличивает выход газообразных продуктов. Если сравнить скорости превращений отдельных групп углеводородов, то окажется следующая последовательность их разложения: алканы - циклоалканы - арены. Следовательно, повышение температуры способствует накоплению аренов в продуктах крекинга.
Повышение давления сдвигает равновесие реакций расщепления углеводородов, протекающих с увеличением объёма и образованием газообразных продуктов справа налево. В соответствии с этим, если стремятся увеличить выход жидких продуктов, то процесс проводят под повышенным давлением и, наоборот, если желательно получать больше газов, осуществляют крекинг при пониженном давлении.
Термический крекинг подразделяется на жидкофазный (переработка тяжёлых фракций и остатков от переработки нефти, а также лёгких фракций - лигроина, керосина, газойля при 460-560 0С и давлении 2-7 МПа) и парофазный (переработка гудрона, битума и крекинг-остатков при 550-600 0С и нормальном давлении).
Принципиально технология заключается в том, что сырьё нагревается в трубчатых печах до температуры, при которой крекинг углеводородов протекает с достаточной скоростью, а затем продукты крекинга разделяются ректификацией. В результате термического крекинга получают бензин, газы и крекинг-остаток.
Значение термического крекинга среди других химических методов переработки нефти и нефтепродуктов в настоящее время ниже, чем это было 20-25 лет назад. Тем не менее этот процесс до сих пор применяется для переработки тяжёлых нефтяных остатков. Так, например, при термическом крекинге мазута получают следующий средний выход продуктов (%): крекинг-бензина 30-35; крекинг-газов 10-15; крекинг-остатка 50-55.
Бензины термического крекинга обладают более высокой детонационной стойкостью, чем некоторые бензины прямой гонки, благодаря наличию в них ароматических и разветвлённых углеводородов. Октановое число таких бензинов около 70. Присутствие в крекинг-бензинах реакционно-способных непредельных углеводородов делает их менее стабильными, чем бензины прямой гонки.
Газы термического крекинга - смесь предельных и непредельных углеводородов: этана, этилена, пропана, пропилена, бутанов, бутиленов, пентанов и др. - служат сырьём для химических синтезов. Крекинг-остаток используется главным образом как котельное топливо.