Химия нефти и газа

Автор работы: Пользователь скрыл имя, 25 Марта 2011 в 20:03, курсовая работа

Описание работы

Состав нефтей и газов зависит от геологических и геохимических условий образования и залегания нефтей. Поэтому изучение химического состава нефтей имеет очень большое значение для понимания геохимических процессов превращения нефтей в земной коре. Состав нефтей определяет, в свою очередь, способы их добычи и транспорта, направления и особенности их переработки для получения разнообразных продуктов.

Файлы: 1 файл

Химия нефти.doc

— 1.69 Мб (Скачать файл)

     Битум может входить в состав промывочной  жидкости, используемой при бурении. Качество битумов зависит от содержания в них различных смолисто-асфальтовых веществ. Так, асфальтены придают битумам твёрдость, повышают их температуру размягчения, а нейтральные смолы обеспечивают эластичность и повышают прочность. 

     2.6.5.   Минеральные компоненты  

     К минеральным компонентам нефти  относят содержащиеся в нефти  соли и комплексные органические соединения металлов. Общее содержание их в нефти не превышает 0,03% масс. Часть металлов попадает в нефть при её добыче и транспортировке. В нефтях обнаружены щелочные и щелочно-земельные металлы (Na, K, Ba, Sr, Mg), металлы переменной валентности (d-элементы:V, Zn, Ni, Fe, Mo, Co, W, Cr, Cu, Mn, Pb, Ga, Ag, Ti; p-элементы: Cl, Br, I, Si, Al, B, P ) и др.

     Определение состава и концентрации этих элементов  проводят главным образом спектральным анализом золы, полученной при сжигании нефти.

     В заметно больших количествах  по сравнению с другими элементами в нефти содержится ванадий и  никель, которые связаны в металлопорфириновые комплексы.

     В высокосернистых нефтях содержание ванадия достигает 2·10-2%, никеля 1·10-2%, содержание других металлов значительно меньше.

     Изучение  микроэлементов нефти представляет большой интерес в связи с  проблемой происхождения нефти. Наличие в нефти многих элементов, характерных для растений и животных, является доказательством их родства.

     Присутствующие  в нефтях металлы затрудняют её переработку. Многие металлы и, в первую очередь, ванадий и никель снижают активность катализаторов, ускоряют процесс отложения кокса в печах. При сгорании котельных топлив образуется оксид ванадия (V), который способствует коррозии.

     Присутствующие  в нефтяных коксах микроэлементы  нефти загрязняют продукцию электротермических производств (алюминий, железо и др.). Металлоорганические комплексы зачастую обладают поверхностно-активными свойствами и адсорбируются на границе раздела нефти и воды, способствуя образованию эмульсий.

     Металлоорганические соединения. Металлоорганические соединения V, Ni, Cu, Zn и других металлов, содержащихся в нефтях, в основном, сосредоточены в гудроне, хотя некоторая часть (до 0,01%) их летуча и при перегонке переходит в масляные дистилляты.

     Основная  часть металлов связана со смолами  и асфальтенами. Значительная часть металлов находится в нефтях в виде металлопорфириновых комплексов. Содержание металлорганических соединений в нефтях с высоким содержанием гетероорганических соединений, смол и асфальтенов значительно - на 2-3 порядка – выше, чем в малосернистых нефтях с низким содержанием асфальто-смолистых веществ. 

  1.   Переработка нефти
 

     3.1. Подготовка нефти к переработке 

     Добытая на промыслах, так называемая сырая  нефть, содержит попутный газ (50-100 м3/т), пластовую воду (200-300 кг/т), минеральные соли (10-15 кг/т) в виде водных растворов и механические примеси.

     Прежде  чем пустить нефть на переработку, нужно избавиться от примеси твёрдых частиц, а также от воды и газа. Если не удалить твёрдые примеси, то они будут портить установки, в которых нефть подвергается переработке, а в связи с этим снижать качество получаемых нефтепродуктов.

     Следует выделить из нефти газ и наиболее летучие её компоненты. Если этого не сделать, то при хранении нефти даже за то время, которое пройдёт, пока она попадёт на нефтеперерабатывающий завод, газ и наиболее летучие жидкие углеводороды выделятся и будут утеряны. А между тем газ и наиболее летучие жидкие углеводороды являются ценными продуктами. Поэтому одна из задач подготовки нефти заключается в выделении и сборе газа и летучих её компонентов.

     Выделение из нефти попутных газов производится в газоотделителях-трапах путём уменьшения растворимости газов за счёт снижения давления.

     Одновременно  с газами увлекается и часть лёгких бензиновых фракций, которые затем направляются для дальнейшей переработки на газоперерабатывающие (газобензиновые) заводы. На эти заводы поступают также газы и конденсат газоконденсатных месторождений. На этих заводах проводят:

  1. извлечение из газов нестабильного бензина, углеводородов от С3 и выше;
  2. сжижение газа для перекачки его потребителям;
  3. разделение нестабильного бензина на индивидуальные углеводороды - пропан, изобутан, бутан и стабильный бензин.

     На  газоперерабатывающих заводах имеются  также установки по осушке и очистке  газа от сероводорода.

     На  промыслах нефть также освобождается  от основной части воды и солей.

     Вода  является постоянным и неизбежным компонентом, выходящим вместе с нефтью из скважины.

     Отделить  нефть от воды необходимо по той  причине, что примесь воды нарушает технологический режим работы установок, где происходит переработка нефти. Кроме того, в воде, примешанной  к нефти, содержатся растворённые соли – хлористый натрий, хлористый кальций и магний. При перегонке нефти эти хлористые соли частично разлагаются, а образующаяся при этом соляная кислота разъедает аппаратуру.

     Освободить  нефть от воды во многих случаях  не так легко. Дело в том, что при движении нефти с той или иной примесью воды к скважине по пористым породам нефть с водой часто настолько хорошо перемешиваются, что образуется эмульсия. В результате из скважины выходит не нефть с примесью воды как две несмешивающиеся и легко разделяющиеся жидкости, а эта эмульсия. Вода находится здесь в виде бесчисленного количества мельчайших капель, рассеянных в нефти и образующих с ней однородную смесь. Встречается и другой тип эмульсий, когда нефть в виде мельчайших капель находится в воде.

     Образование таких мельчайших капель нефти или  воды объясняют тем, что из присутствующих в нефти и воде примесей на поверхностях капель образуется плёнка некоторых веществ, препятствующая слиянию капель. Эти вещества называются эмульгаторами. К ним относятся содержащиеся в нефтях смолы, асфальтены, мыла нафтеновых кислот, соли. В зависимости от присутствия тех или иных эмульгаторов образуются мельчайшие капельки или нефти, или воды.

     Нефтяные  эмульсии являются устойчивыми смесями. Такая эмульсия даже при длительном её хранении в каком либо резервуаре не разделяется на нефть и воду. Нужно добавить, что из нефтяной эмульсии не осаждаются и мелко распылённые твёрдые частицы горных пород. Направлять эмульсию на нефтеперерабатывающий завод нельзя из–за присутствия в ней воды и примеси твёрдых частиц. Поэтому нефтяная эмульсия предварительно подвергается специальной обработке, называемой деэмульсацией нефти.

     Поскольку причиной, препятствующей слиянию капелек, является наличие на их поверхностях плёнок эмульгатора, то задача заключается в том, чтобы разрушить эти плёнки. Известно несколько способов деэмульсации нефти. Один из способов заключается в нагреве нефтяной эмульсии. При этом у нестойких эмульсий в резервуарах–отстойниках происходит разделение нефти и воды. Однако во многих случаях эмульсии являются достаточно стойкими, и подогрев с отстоем в резервуаре не приводит к желаемому разделению нефти и воды.

     Поэтому для деэмульсации нефти широко применяется  добавка к эмульсии специальных  веществ – деэмульгаторов в сочетании с подогревом.

     В настоящее время для разрушения эмульсий и удаления воды применяют различные способы, в том числе термохимический под давлением. Более качественным способом разрушения эмульсий является электрический способ, основанный на воздействии электрического поля.

     Обессоливание и обезвоживание нефти под  действием электрического поля осуществляется на специальных электрообессоливающих установках в аппаратах, называемых электродегидраторами.

     В таком электродегидраторе  имеются  электроды, между которыми проходит эмульсия. К электродам подведено высокое напряжение от трансформатора. Под действием переменного напряжения происходит движение заряженных капелек. Непрерывное изменение направления движения капелек, связанное с частотой электрического поля, приводит их к столкновению друг с другом и с электродами. В результате этого происходит слияние капель. Вода накапливается в нижней части электродегидратора и спускается по трубе.

     В настоящее время для эмульсации применяют электродегидраторы, имеющие шаровую форму и ёмкость 500 – 600 м3.

     Введение  деэмульгатора непосредственно  в свежеполученную из скважины нефть  способствует более глубокому обессоливанию, позволяет снизить содержание остаточных солей на ЭЛОУ (до 5 – 7 мг/л). Обычно нефть  поступает на ЭЛОУ после обработки в термохимических отстойниках, где отделяется основная масса пластовой воды, – это облегчает работу электродегидраторов. В электродегидраторы подаётся нефть с добавлением 3 – 7% промывной воды и около 0,05% щёлочи. Щёлочь необходима для создания нейтральной или слабощелочной среды, что ускоряет процесс деэмульсации и уменьшает коррозию аппаратуры.

     На  рис. 3  изображена технологическая  схема электрообессоливающей установки, совмещающей ступень термохимического обезвоживания и собственно ЭЛОУ.

     Такая обработка нефти производится предварительно на промысле и окончательно на нефтеперерабатывающем  заводе. Кроме того, на заводе проводится защелачивание нефти (добавление раствора щёлочи или аммиака) для нейтрализации кислых и сернистых примесей, вызывающих коррозию аппаратуры при переработке нефти.

Рис. 3. Технологическая  схема электрообессоливающей

установки (ЭЛОУ) с шаровыми электродегидраторами:

    1 – сырьевой насос; 2 – теплообменник; 3 – паровой подогреватель; 4 – термоотстойник;     5,6 – электродегидраторы; 7,8 – водяные насосы; 9 – дозировочные насосы; 10 – смесительные клапаны; 11 – регулятор давления.

    Линии: I – сырая нефть; II – деэмульгатор; III – щёлочь; IV – свежая вода;

    V – обессоленная  нефть; VI – водяной  пар; VII – вода  в канализацию 

     3.2. Первичная перегонка  нефти 

     Первичная перегонка нефти – первый технологический  процесс переработки нефти. Установки первичной переработки имеются на каждом нефтеперерабатывающем заводе.

     Прямая  перегонка основана на разнице в  температурах кипения групп углеводородов, близких между собой по физическим свойствам.

     Перегонка или дистилляция – это процесс разделения смеси взаимнорастворимых жидкостей на фракции, которые отличаются по температурам кипения как между собой, так и с исходной смесью. При перегонке смесь нагревается до кипения и частично испаряется; получают дистиллят и остаток, которые по составу отличаются от исходной смеси. На современных установках перегонка нефти проводится с применением однократного испарения. При однократном испарении низкокипящие фракции, перейдя в пары, остаются в аппарате и снижают парциальное давление  испаряющихся высококипящих фракций, что даёт возможность вести перегонку при более низких температурах.

     При однократном испарении и последующей  кондесации паров получают две фракции: лёгкую, в которой содержится больше низкокипящих компонентов, и тяжёлую, в которой содержится меньше низкокипящих компонентов, чем в исходном сырье, т.е. при перегонке происходит обогащение одной фазы низкокипящими, а другой высококипящими компонентами. При этом достичь требуемого разделения компонентов нефти и получить конечные продекты, кипящие в заданных температурных интервалах, с помощью перегонки нельзя. В связи с этим после однократного испарения нефтяные пары подвергаются ректификации.

     Ректификация – диффузионный процесс разделения жидкостей, различающихся по температурам кипения, за счёт противоточного многократного контактирования паров и жидкости.

     На  установках первичной перегонки  нефтти однократное испарение и  ректификация, как правило, совмещаются.

Информация о работе Химия нефти и газа