Автор работы: Пользователь скрыл имя, 25 Марта 2011 в 20:03, курсовая работа
Состав нефтей и газов зависит от геологических и геохимических условий образования и залегания нефтей. Поэтому изучение химического состава нефтей имеет очень большое значение для понимания геохимических процессов превращения нефтей в земной коре. Состав нефтей определяет, в свою очередь, способы их добычи и транспорта, направления и особенности их переработки для получения разнообразных продуктов.
2. Галогенирование
Реакция взаимодействия с галогенами протекает медленнее, чем для алкенов. Эта реакция используется для синтеза растворителей:
3. Гидрогалогенирование
Гидрохлорированием ацетилена в промышленности получают винилхлорид:
Из винилхлорида получают полимер – поливинилхлорид.
4. Гидратация
Непосредственная гидратация ацетилена приводит к образованию ацетальдегида (реакция открыта в 1881 г. Кучеровым М.Г.):
Ацетальдегид широко используется для получения ценных химических продуктов, как, например, уксусная кислота:
Уксусная кислота служит для
получения химических волокон
и пластмасс, растворителей и многих
других продуктов. Она используется для
кислотной обработки высокотемпературных
скважин с целью увеличения нефтеотдачи
пластов.
5. Присоединение синильной кислоты:
6. Присоединение органических кислот и спиртов:
Образующиеся виниловые эфиры используются как мономеры для производства полимеров и пластических масс.
7. Окисление
Алкины окисляются легче алкенов. Процесс сопровождается разрывом углеродной цепи по месту тройной связи. При добавлении раствора перманганата кальция алкины быстро его обесцвечивают, что может быть использовано как качественная реакция на тройную связь:
8. Реакции замещения
Отличительной особенностью алкинов является подвижность атомов водорода, соединённых с углеродными атомами, имеющими тройную связь. Этот атом легко замещается на галогены, металлы. В результате взаимодействия с металлами образуются ацетилениды.
Например, при действии на ацетилен аммиачным раствором CuOH образуется красно-коричневый осадок ацетиленида меди:
Эту реакцию можно использовать для обнаружения алкинов с концевой тройной связью и для выделения ацетиленовых углеводородных смесей. После осаждения и отделения ацетиленидов свободные алкины можно выделить действием минеральных кислот:
Промышленное
значение имеют реакции полимеризации
алкинов.
2.5.3. Непредельные углеводороды нефти и нефтепродуктов,
влияние на качество
топлив, применение
Ранее считалось, что алкены либо не содержатся в нефтях, либо содержатся в незначительных количествах. В конце 80-х годов было показано, что в ряде нефтей Восточной Сибири, Татарии и других районов России содержание алкенов может доходить до 15-20% от массы нефти.
В
небольших количествах они
Алкадиены содержатся в продуктах парофазного крекинга и пиролиза в количествах от 5 до 10% (масс.). В основном это 1,3-бутадиен, 1,3-пентадиен (пиперилен), циклопентадиен.
Непредельные углеводороды повышают октановое число топлив. Однако вследствие высокой реакционной способности они легко окисляются кислородом воздуха (особенно диены). В результате окисления образуются осадки и смолы, которые могут привести к нарушению работы двигателей. Поэтому для получения стабильных к окислению нефтепродуктов их либо подвергают очистке от непредельных углеводородов, либо добавляют антиокислители.
Непредельные
углеводороды являются важнейшим сырьём
для нефтехимической промышленности.
На их основе производят большую часть
всех нефтехимических продуктов.
2.6. Гетероатомные соединения и минеральные
компоненты нефти
Гетероатомными называют соединения, в которых кроме атомов углерода содержатся гетероатомы (O, S, N). Во всех нефтях присутствуют гетероатомные соединения: кислородные, сернистые, азотистые. В нефтях содержатся гетероатомные соединения как циклического, так и в значительно меньшей степени ациклического характера. Содержание и соотношение их зависит от возраста и происхождения нефти.
Количество
гетероатомных соединений в низкомолекулярной
части нефти невелико (до 10%). Основная
их масса концентрируется в
Смолисто-асфальтовых веществ больше в молодых нефтях, и поэтому они обычно содержат больше гетероатомных соединений.
Присутствие
определённых гетероатомных соединений
и их содержание в нефтях имеет большое
значение для решения вопроса об исходном
материале нефти и процессов её преобразования
в период созревания.
2.6.1.
Кислородные соединения
Содержание
кислородных соединений в нефти
достигает 10%. Основная часть кислорода,
содержащегося в нефтях, приходится на
долю смолисто-асфальтовых веществ (около
90%). Остальные кислородные соединения
представлены органическими кислотами,
фенолами, кетонами и эфирами.
2.6.1.1.
Кислоты
Органическими
или карбоновыми кислотами
Общая формула карбоновых кислот: R-COOH. Число карбоксильных групп определяет основность кислот. Кислоты бывают одноосновные (монокарбоновые) и многоосновные (поликарбоновые). В зависимости от природы групп, связанной с карбоксильной группой, кислоты могут быть предельными, непредельными, ароматическими.
Предельные кислоты подразделяют на алифатические (жирные) и циклические.
Номенклатура. Карбоновые кислоты чаще всего называют согласно тривиальной номенклатуре. Названия эти обычно связаны с источниками, из которых они были выделены впервые: например, муравьиная кислота – из муравьёв, уксусная кислота – из уксуса, масляная кислота – из масла и т.д.
По систематической номенклатуре названия монокарбоновых кислот производят от названия углеводородов с тем же числом атомов углерода, добавляя окончания -овая и слово “кислота”. При наличии заместителей нумерация главной цепи начинается с углерода, входящего в состав карбоксильной группы:
Карбоксильная группа может
Для распространенных карбоновых кислот природного происхождения в нефтехимии используют тривиальные названия. Указанные правила применимы по своему смыслу и к номенклатуре ди- и поликарбоновых кислот.
Для обозначения солей карбоновых кислот окончания -овая кислота заменено на - ат, после чего дают название катиона:
Нефтяные кислоты, физические свойства и применение. Все карбоновые кислоты, входящие в нефть и её фракции, называют нефтяными кислотами. Нефтяные кислоты представляют в основном смесь алифатических и нафтеновых кислот. Основную массу нефтяных кислот составляют производные моноциклоалканов с общей формулой СnH2n-1COOH (n = 5, 6, 9), которые получили название нафтеновых кислот. Содержание их в нефтях колеблется от следов до 3% (наибольшее количество приходится на средние фракции). Большинство нафтеновых кислот являются производными циклопентана и циклогексана с преобладанием первого. Карбоксильная группа, как правило, удалена от цикла на 1-5 атомов углеводорода:
Цикл
может иметь метильные
В отдельных случаях в нефтях обнаружены органические кислоты с ароматическим кольцом в молекуле. В тяжёлых фракциях нефтей содержатся кислоты, являющиеся производными гибридных углеводородов.
Физические свойства кислот представлены в табл. 10.
Первые три члена ряда жирных кислот - бесцветные подвижные жидкости с резким раздражающим запахом, смешиваются с водой во всех соотношениях. Начиная с масляной кислоты - маслянистые жидкости, плохо растворимые в воде, с приятным запахом.
Высшие кислоты, начиная с декановой, - твёрдые соединения, лишённые запаха. Они практически не растворимы в воде, но растворяются в эфире и бензоле.
С повышением молекулярной массы кислот повышается их температура кипения и понижается плотность. Температуры плавления кислот проявляют те же закономерности, что и в ряду алканов. Температура кипения кислот изостроения ниже, чем у неразветвлённых кислот. Вследствие высокой полярности связи О-Н карбоновые кислоты образуют прочные межмолекулярные водородные связи. Поэтому низшие карбоновые кислоты менее летучи, чем этого можно было бы ожидать на основании их молекулярных масс. Во всех агрегатных состояниях (даже отчасти и в газообразном) преобладают димерные молекулы с двумя водородными связями:
Все двухосновные кислоты - бесцветные кристаллические вещества. Низшие гомологи хорошо растворяются в воде.
Нафтеновые кислоты обладают всеми свойствами карбоновых кислот.
Нафтеновые кислоты, выделенные из нефти, представляют собой тёмную маслянистую жидкость с неприятным запахом. Они слабо растворимы в воздухе, хорошо растворимы во всех органических растворителях. Нафтеновые кислоты имеют низкую температуру застывания (до -800). Они обладают свойством сильно понижать поверхностное натяжение воды.
Нефтяные
кислоты взаимодействуют с
По этой причине все нефтяные кислоты удаляют из нефтепродуктов в процессе их очистки. Для очистки нефти и нефтяных фракций от нефтяных кислот используют способность их при взаимодействии со щелочами, карбонатами или оксидами щелочных металлов образовывать нерастворимые в углеводородах, но растворимые в воде соли.
Применение. Технические нафтеновые кислоты (асидол, мылонафт), выделяемые из керосиновых и лёгких масляных дистиллятов, применяют в качестве растворителей смол, каучука. Используют для пропитки шпал и в ряде иных производств.