Оптика

Автор работы: Пользователь скрыл имя, 22 Декабря 2014 в 22:53, реферат

Описание работы

Оптика (от греч. optike - зрительный) – раздел физики, изучающий природу и свойства света, процессы его излучения и распространения, взаимодействие света с веществом. Оптика изучает широкий диапазон электромагнитных волн, охватывающий ультрафиолетовую, видимую и инфракрасную области.

Файлы: 1 файл

Лекции ФДО Оптика.DOC

— 1.91 Мб (Скачать файл)

Наблюдать нейтрино очень сложно, так как они почти не взаимодействуют с другими частицами и, согласно теоретическим оценкам, нейтрино с энергией 1 МэВ могут пробегать без столкновения в воде порядка 1000км. Такие нейтрино свободно пронизывают Солнце и, тем более, Землю. Чтобы зарегистрировать процесс захвата нейтрино другими частицами, необходимо иметь огромные плотности их потока. Это стало возможным только после создания ядерных реакторов, в которых при ядерных реакциях возникают мощные потоков нейтрино.

Гамма-распад заключается в испускании возбужденным ядром гамма – квантов, энергия которых варьируется в пределах от 10КэВ до 5МэВ. Гамма-излучение - это не самостоятельный тип радиоактивности, оно сопровождает процессы α и β – распада. Существенно, что спектр испускаемых гамма – квантов дискретный. Это объясняется тем, что согласно оболочной модели, ядро  имеет дискретные энергетические уровни возможных состояний и переход ядра из возбужденного состояния в состояние с меньшей энергией должен по квантовой механике сопровождаться испусканием кванта электромагнитного излучения. Вследствие дискретности энергий состояний, спектр излучаемых частот тоже должен быть дискретен.

 

Модели ядра: капельная, оболочная. Ядерные силы.

К настоящему времени еще нет последовательно законченной теории ядра, которая объясняла бы все его свойства. Это связано в основном с двумя трудностями: с недостаточностью наших знаний о силах взаимодействия нуклонов в ядре и с тем, что каждое атомное ядро - это квантовая система большого количества сильно взаимодействующих частиц. Поэтому в теории атомного ядра очень важную роль играют модели, достаточно хорошо описывающие определенную совокупность ядерных свойств и допускающие сравнительно простую математическую трактовку. При этом каждая модель обладает, естественно, ограниченными возможностями и не претендует на полное описание ядра. Наиболее популярны две основные модели ядра: капельная и оболочная.

1. Капельная модель является простейшей моделью, в ней атомное ядро рассматривается как капля заряженной несжимаемой жидкости с очень высокой плотностью (~1014 г/см3). Капельная модель позволила вывести полуэмпирическую формулу для энергии связи ядра и помогла объяснить ряд других явлений, в частности, процесс деления тяжелых ядер.

2. Оболочная модель является более  реалистичной, в ней считается, что  каждый нуклон движется в усредненном  поле остальных нуклонов ядра  и, в соответствии с этим, имеются  дискретные энергетические уровни нуклонов, заполненные с учетом принципа Паули. Эти уровни группируются в оболочки, в каждой из которых может находиться определенное число нуклонов. Полностью заполненные оболочки образуют наиболее стабильные ядра, таковыми являются ядра, в которых количество нуклонов равно 2, 8, 20, 28, 50, 82, 126. Эти числа и соответствующие им ядра называют магическими.

Наблюдаемая в природе стабильность ядер означает, что взаимодействие нуклонов в ядре не может быть сведено к электрическому или гравитационному взаимодействиям. Действительно, между протонами в ядре действуют кулоновские силы отталкивания и гравитационные силы притяжения, но, согласно расчетам, силы притяжения намного меньше сил отталкивания и протоны не могут быть удержаны ими в ядре. Следовательно, в атомных ядрах между нуклонами должно иметь место особое взаимодействие. Это взаимодействие называют сильным ядерным. Ядерные силы – это фундаментальные (основные) силы, действующие между нуклонами и удерживающие их в ядре.

У ядерных сил имеются следующие отличительные особенности:

1. ядерные силы – это силы  притяжения, ядерных сил отталкивания  не существует;

2. по сравнению с электромагнитными силами они в сотни раз сильнее;

3. эти силы являются  короткодействующими и действуют  только в пределах ядра (на расстояниях 10-14м.);

4. они обладают зарядовой  независимостью, что проявляется  в одинаковости сил взаимодействия  различных нуклонов;

5. эти силы не являются  центральными, то есть они не  действуют вдоль прямой, проходящей  через центры взаимодействующих нуклонов;

6. ядерные силы зависят  от ориентации спинов нуклонов;

7. обладают свойством насыщения, что проявляется в слабой зависимости  энергии взаимодействия, приходящейся  на один нуклон, от общего числа  нуклонов, это связано с тем,  что каждый нуклон в ядре взаимодействует с примерно одинаковым числом ближайших нуклонов.

 

Энергия связи ядра. Дефект массы.

Вследствие наличия сильного ядерного взаимодействия, удерживающего нуклоны в ядре, для разделения ядра на отдельные нуклоны необходимо совершить работу и затратить энергию. Эту энергию, необходимую для разделения ядра на составляющие его нуклоны, называют энергией связи ядра Есв.  Согласно закону сохранения энергии для энергии связи можно записать

ЕЯ + Есв =åЕNi  ,                                                                                                                  (3.1)

где ЕЯ - энергия неподвижного ядра,  åЕNi – суммарная энергия отдельных неподвижных нуклонов. Но, согласно Эйнштейну, известно, что энергия покоя любой частицы связана с его массой как Е= mc2, поэтому можно записать

Есв = åЕNi - ЕЯ = Σmic2 – mЯc2 = (Zmp + Nmn – mЯ)) c2 ,                                                   (3.2)

где Σmi – сумма масс покоящихся нуклонов, mЯ – масса ядра в покое. Так как энергия связи положительна, то получаем соответственно

Σ mi  - mЯ  º Dm >0,                                                                                  (3.3)

полученное соотношение показывает, что масса покоя ядра меньше чем суммарная масса покоя содержащихся в нем нуклонов. Экспериментальные измерения масс атомных ядер, выполненные с большой точностью, показывают, что действительно масса ядра всегда меньше суммы масс составляющих его нуклонов. Величину, равную разности масс нуклонов  и массы атомного ядра Dm называют дефектом массы.

 



-  -


Информация о работе Оптика