Автор работы: Пользователь скрыл имя, 22 Декабря 2014 в 22:53, реферат
Оптика (от греч. optike - зрительный) – раздел физики, изучающий природу и свойства света, процессы его излучения и распространения, взаимодействие света с веществом. Оптика изучает широкий диапазон электромагнитных волн, охватывающий ультрафиолетовую, видимую и инфракрасную области.
В 1690 г. голландский физик Х.Гюйгенс предположил, что каждая точка, до которой дошло волновое возмущение, т.е. каждая точка волнового фронта, сама является точечным источником вторичных сферических волн. Данное утверждение получило название принципа Гюйгенса. Он позволяет определить фронт волны в момент времени t+Dt, если известно его положение в некоторый момент времени t. Рассмотрим точечный источник света S (рис. 1.4). В момент времени t фронт волны Ф1 представляет собой сферу радиуса R1 = сt. Чтобы узнать положение фронта Ф2 в момент времени t+Dt, согласно принципу Гюйгенса необходимо из каждой точки фронта Ф1 построить вторичные сферические волны, которые будут представлять собой сферы радиуса r = сDt. Поверхность, огибающая эти сферы, даст положение фронта Ф2, также представляющего собой сферу.
Если монохроматические световые волны имеют постоянную во времени разность фаз и колебания их световых векторов происходят в одной плоскости, то они называются когерентными (от греч. cohereus - согласованный). Такие согласованные когерентные волны при наложении их друг на друга могут создать в пространстве картину, заключающуюся в чередовании светлых и темных областей. Данное явление перераспределения интенсивности световой волны в пространстве при наложении двух или нескольких когерентных волн называется интерференцией света.
Любое светящееся тело состоит из огромного количества светящихся атомов, каждый из которых излучает лишь очень короткое время τ = 10- с и затем «потухает». За это время атом испускает кусок волны приблизительно 3 м, называемый волновым цугом. Затем возбуждение атома повторяется, но излучаемый волновой цуг будет иметь другую начальную фазу, которая задается случайным образом. Следовательно, цуги одного атома, а тем более цуги разных атомов, принадлежащих одному источнику, будут некогерентными. По этой причине в результате наложения световых волн от двух независимых источников (например, двух электрических ламп накаливания) явление интерференции никогда не наблюдается.
Пусть в некоторую точку А одновременно приходят две световые волны от когерентных источников света S1 и S2, световые векторы которых колеблются в одной плоскости (рис. 2.1). Пусть источники начинают излучать одновременно, начальные фазы волн равны нулю и амплитуды одинаковы. Тогда уравнения волн можно записать следующим образом:
Складывая эти выражения, можно получить что результирующая величина Е в точке А будет равна:
Величина не зависит от времени и является амплитудой суммарного колебания в точке А. Амплитуда может принимать нулевое значение, если а это выполняется если аргумент косинуса равен нечетному числу π/2. При этом происходит взаимное «гашение» волн и мы наблюдаем ослабление интенсивности суммарной волны, то есть интерференционный минимум. Определим положение в пространстве таких точек:
, где m = 0, 1, 2…. - любое целое число, которое называется порядком интерференции, запись означает нечетное число. х1 и х2 – геометрические пути световых волн от источников света S1 и S2 соответственно, до произвольной точки А (рис. 2.1). Разность х2 - х1 = Δ называется геометрической разностью хода волн. Если свет распространяется в среде с показателем преломления n, необходимо рассматривать оптический путь волн l = xn. Если световые волны проходят в разных средах, их оптические пути будут l1=x1n1 и l2=x2n2 и оптическая разность хода Δ = l2 - l1. Таким образом, если в произвольной точке пространства оптическая разность хода накладываемых волн равна нечетному числу полуволн, то в ней наблюдается минимум интерференции. Условие есть условие интерференционного минимума.
Если что возможно при равенстве аргумента нулю или четному числу π/2, амплитуда светового вектора для данной точки будет в любой момент времени равна 2Е0. Определим положение этих точек:
Если в произвольной точке пространства оптическая разность хода накладываемых волн равна четному числу полуволн или целому числу длин волн, то в ней наблюдается максимум интерференции и условие является условием интерференционного максимума. Если между световыми волнами существует разность хода, то они также обладают разностью фаз.
Получим условия интерференционных максимумов и минимумов для разности фаз δ:
Если вместо Δ подставить значения Δmax и Δ min, то мы получим условия максимума и минимума интерференции для разности фаз δ max = ±2πm и δ min = ±(2m+1)π, ( m = 0,1,2…).
Если амплитудные значения светового вектора не равны друг другу, т.е. Е01 ≠ Е02, то квадрат результирующей амплитуды определяется по формуле:
Е2 = Е012 + Е022 + 2Е01Е02cos (φ2 – φ1),
где (φ2 – φ1) – разность фаз колебаний. Поскольку интенсивность света I пропорциональна квадрату амплитудного значения Е, то
В точках пространства, где cos (φ2 – φ1) > 0, результирующая интенсивность I > I1 + I2. Если cos (φ2 – φ1) < 0, то I < I1 + I2. Таким образом, мы наблюдаем перераспределение интенсивности и интерференционную картину.
В природе мы неоднократно наблюдали радужную окраску мыльных пузырей, тонких пленок нефти и масла на поверхности воды и оксидных пленок на поверхности металлов. Эти явления обусловлены интерференцией света в тонких пленках, возникающей при наложении когерентных световых волн, отраженных от верхней и нижней поверхностей пленки.
Пусть на плоскопараллельную прозрачную пластину с показателем преломления n и толщиной d под углом i падает плоская монохроматическая волна (рис. 2.4). Рассмотрим луч 1, который, коснувшись поверхности в точке О, разделится на два когерентных луча: отраженный от верхней поверхности пленки 1’ и преломленный 1’’. Луч 1’’ пройдет пленку, частично отразится от нижней ее поверхности в точке С, дойдет до точки В и, преломившись, выйдет из пленки. Проведем прямую АВ, перпендикулярную лучам 1’ и 1’’. Путь, который оба луча пройдут от этой прямой до экрана, будет одинаковым, но от точки О до АВ путь, пройденный лучами, будет различным. Найдем эту разность хода лучей Δ. С учетом показателя преломления пластинки n: Δ = =(OC+CB)·n–OA, или, как дает математический расчет, . Известно, что в процессе отражения от оптически более плотной среды, световой луч теряет половину длины волны λ/2. Если пластинка находится в воздухе, то λ/2 теряет луч 1’ в точке О и выражение для разности хода приобретает вид:
Если на пути лучей поставить собирающую линзу, а в ее фокальной плоскости – экран, то лучи 1’ и 1’’соберутся в точке М. Освещенность точки экрана будет максимальной, если разность хода Δ составит целое число длин волн и минимальной, если Δ составит нечетное число полуволн.
Разберем несколько различных вариантов интерференции света в тонких пленках.
1. Полосы равного наклона. Пусть на плоскопараллельную пластинку толщиной d = const падает расходящийся пучок монохроматических лучей (т.е. пучок, в котором представлены всевозможные углы падения i ≠ const) (рис. 2.5). Выделим из всего множества лучей луч 1 с углом падения i1, который в результате отражения и преломления образует лучи 1’и 1’’, и луч 2 с углом падения i2, который в результате отражения и преломления образует лучи 2’ и 2’’. Так как пластинка плоскопараллельная, лучи 1’ и 1’’, 2’ и 2’’ будут попарно параллельны и в бесконечности образуют интерференционную картину. Если параллельно пластинке расположить линзу Л, а в ее фокальной плоскости поместить экран Э, то интерференционную картину мы будем наблюдать на экране. Лучи 1’ и 1’’ встретятся на экране в точке М1, а лучи 2’ и 2’’ – в точке М2. Положение этих точек можно найти, если построить побочные оптические оси, проходящие через центр линзы O и параллельные каждой паре лучей. На рис. 2.5 это пунктирные линии ОМ1 и ОМ2, соответственно. Необходимо заметить, что в точке М1 встретятся и проинтерферируют все одинаково ориентированные лучи, падающие под углом i1. Однако, если рассмотреть луч 3 с тем же углом падения i1, но иначе ориентированный по отношению к пластинке (см. рис. 2.5), то интерференция подобных ему лучей будет наблюдаться в другой точке экрана М3, находящейся на таком же расстоянии от центра экрана, что и точка М1. Таким образом, лучи с углом падения i1, но с разными ориентациями, образуют на экране кольцо, освещенность будет зависеть от разности хода лучей. Лучи с углом падения i2 и всевозможных ориентаций образуют на экране кольцо с тем же центром, но другого радиуса. В итоге на экране получится интерференционная картина, состоящая из концентрических светлых и темных колец, каждое из которых соответствует строго определенному углу наклона (углу падения) лучей. Поэтому данная интерференционная картина получила название полос равного наклона. Если линза и экран не параллельны пластине, то полосы равного наклона будут иметь вид эллипсов.
2. Полосы равной толщины. Пусть на клиновидную пластинку малого угла наклона α (d ≠ const) с показателем преломления n падает плоская монохроматическая волна (рис. 2.6). Из множества падающих на клин лучей рассмотрим лучи 1 и 2. Отраженный луч 1’ и луч 1’’ (и, соответственно лучи 2’ и 2’’) пересекутся вблизи поверхности клина и проинтерферируют.
Мысленно проведем через точки пересечения В1 и В2 плоскость, параллельно ей разместим собирающую линзу и за линзой сопряженно с плоскостью В1 В2 установим экран Э (рис. 2.6). Чтобы определить на экране точку М1, в которой соберутся лучи 1’ и 1’’, надо через точку В1 и центр линзы О провести побочную оптическую ось до пересечения с экраном. Аналогично построим на экране точку М2. Разности хода лучей 1’ и 1’’, 2’ и 2’’ будут отличаться из-за разных толщин клина d1 и d2. Следовательно, геометрическое место точек клина, соответствующих какой-то одинаковой толщине d определит одинаковую разность хода для всех лучей, падающих на это место. Для этих лучей на экране выполняется одинаковое условие интерференции. Таким местом в клине является полоса, например, А1А2 (рис. 2.7) и на экране картина имеет вид светлых и темных полос, которые называются полосами равной толщины. В рассмотренном случае полосы равной толщины локализованы близко над поверхностью пластинки. Мы можем увидеть их и не в лабораторных условиях, так как роль линзы в данном случае играет хрусталик, а роль экрана - сетчатка нашего глаза.
Если свет падает на клиновидную пластинку нормально (луч 1’’ перпендикулярен нижней поверхности пластины), то полосы равной толщины локализованы на верхней поверхности клина. При освещении клина снизу, т.е. при наблюдении интерференции в проходящем свете, светлые и темные полосы на экране поменяются местами. Это происходит из-за того, что в данном случае нет потери полуволны. Ширина полос будет тем больше, чем меньше угол наклона α у клина. Если на клин падает белый свет, то интерференционные максимумы будут всех цветов спектра (как, например, радужная окраска мыльных пузырей).
3. Частным случаем полос равной толщины являются кольца Ньютона. Их можно наблюдать с помощью оптической установки, схематически изображенной на рис. 2.8. Плосковыпуклая линза большого радиуса кривизны лежит на плоской пластинке так, что между ними образуется воздушный клин переменной толщины d. Параллельный пучок света падает нормально на плоскую поверхность линзы и частично отражается от верхней (луч 1’) и нижней (луч 1’’) поверхностей воздушного клина. Лучи 1’ и 1’’ когерентные и имеют разность хода ∆ = 2d-λ/2. Такую же разность хода (а, значит, и одинаковое условие интерференции) будут иметь лучи, падающие на клин в местах одинаковой толщины d, а одинаковую толщину клин имеет по окружности. Поэтому интерференционная картина будет состоять из светлых и темных колец, называемых кольцами Ньютона. В центре картины находится темное пятно, которое обусловлено наложением лучей 1’ и 1’’ в точке D, где d = 0, а разность хода ∆ = λ/2, что соответствует условию минимума. От точки D к краям линзы толщина клина неравномерно растет, поэтому ширина и интенсивность колец убывает по мере удаления их от центрального пятна. При наблюдении колец Ньютона в проходящем свете из-за отсутствия потери полуволны в центре картины будет наблюдаться светлое пятно, затем первое темное кольцо и так далее. Максимумы в проходящем свете соответствуют минимумам в отраженном. При наклонном падении света на линзу вместо колец на интерференционной картине получаются эллипсы. Если свет будет не монохроматическим, а белым, светлые кольца приобретают радужную окраску.
Если свет от источника через сферическое отверстие направить на экран (рис. 3.1 а), то, согласно закону прямолинейного распространения света, на экране должно наблюдаться светлое пятно АВ - изображение отверстия. При уменьшении отверстия его изображение также должно уменьшаться. Однако опыт привел к неожиданному результату: начиная с определенного размера отверстия его дальнейшее уменьшение сопровождается увеличением пятна (А’B’), которое становится расплывчатым, неравномерно освещенным и на нем появляется ряд колец (рис. 3.1 б). Данное явление проникновения световых волн в область геометрической тени, огибания ими препятствий и вообще отклонение их от прямолинейного распространения было названо ди фракцией света. Дифракция явилась еще одним подтверждением справедливости волновой теории света.
Изложенный в разделе 2. 1. принцип Гюйгенса помог объяснить дифракцию качественно. Поскольку вторичные источники излучают сферические волны, световое возмущение будет распространяться по всем направлениям. Значит, каждая точка отверстия (рис. 3.1 a) будет источником сферической волны и свет за отверстием может идти по всем направлениям, т.е. отклоняться от прямолинейности. Французский физик О. Френель, развивая идеи Гюйгенса, дал метод количественного расчета дифракции, названный принципом Гюйгенса-Френеля. Рассмотрим основные положения данного принципа:
1. Любой источник света S0 можно заменить эквивалентной системой фиктивных (вторичных) источников, находящихся на какой-либо его волновой поверхности S.
2. Все вторичные источники волновой поверхности S излучают когерентные волны, которые накладываются во всех точках пространства и интерферируют между собой.
3. Каждый вторичный источник излучает преимущественно в направлении внешней нормали n к dS. Амплитуда вторичной волны в направлении r (где r – расстояние от dS до точки наблюдения В) уменьшается с увеличением угла α между r и нормалью n к dS (рис. 3.2). Она становится равной нулю при α ≥ π/2, т.е. излучение внутрь поверхности не распространяется. От каждого участка dS в точку В приходит световое колебание
Здесь Е0 – амплитудное значение светового вектора, С(α)- коэффициент, зависящий от угла α (С(0) = 1, С(π/2)= 0). Тогда результирующий световой вектор от всей волновой поверхности S в точке В равен
Данный интеграл по поверхности называют интегралом Френеля. Современная теория Максвелла электромагнитных волн для точного решения задачи о распространении световых волн при наличии препятствий приводит к выражению аналогичному интегралу Френеля. Это математическое выражение позволяет вычислять световое возмущение в любой точке наблюдения. Недостатком данного принципа является сложность его практического применения.