Оптика

Автор работы: Пользователь скрыл имя, 22 Декабря 2014 в 22:53, реферат

Описание работы

Оптика (от греч. optike - зрительный) – раздел физики, изучающий природу и свойства света, процессы его излучения и распространения, взаимодействие света с веществом. Оптика изучает широкий диапазон электромагнитных волн, охватывающий ультрафиолетовую, видимую и инфракрасную области.

Файлы: 1 файл

Лекции ФДО Оптика.DOC

— 1.91 Мб (Скачать файл)

 

,                       (2.4) 

где mБ - постоянная, служащая единицей измерения магнитных моментов атомов и называемая магнетоном Бора. Сравнивая формулу квантования момента импульса с формулой квантования в теории Бора, можно заметить, что они не совпадают. Более того, при l=0, в квантовой механике возможны состояния атома с нулевым моментом импульса электрона. Опыт подтверждает существование квантовых состояний атома с нулевыми орбитальными моментами, хотя при классическом описании движения электрона в атоме по определенной орбите атом должен всегда обладать ненулевым моментом импульса.

Магнитное квантовое число m характеризует ориентацию момента импульса L  и магнитного момента m во внешнем силовом поле (например, магнитном или электрическом) и может принимать целочисленные значения от – l до + l . Согласно классической теории магнитный момент всегда стремится повернуться вдоль направления магнитного поля. В квантовой механике движение электрона таково, что магнитный момент  может быть направлен в нескольких, строго определенных направлениях в зависимости от состояния атома, то есть он квантуется не только по величине, но и по направлению. Такое пространственное квантование приводит к тому, что проекции момента импульса и магнитного момента электрона на выделенное в пространстве направление  могут иметь только строго определенные значения. Ориентацию магнитного момента и момента импульса задают как и в классической физике, указывая его компоненту вдоль оси z, совпадающей с направлением магнитного поля. В квантовой механике возможные проекции Lz и mz определяются магнитным квантовым числом m с помощью соотношений

                               (2.5)

 

Так как формула квантования проекции механического момента соответствует вполне определенным направлениям ориентации в пространстве векторов L и m, то эту формулу называют обычно формулой пространственного квантования. С точки зрения классического представления об электронной орбите, эта формула определяет возможные дискретные расположения электронных орбит в пространстве по отношению к направлению внешнего поля. По отношению к другим координатам x и y положение векторов момента импульса L  и магнитного момента m меняется так, как если бы они вращались вокруг  оси z. Такое вращение называется прецессией (см. Рис. 9).

 

                                                                                            

Рис. 9.  Пространственное квантование момента импульса для состояния l =1 и траектории прецессии.

Спин электрона.

Из квантовой теории следует, что вследствие симметрии электронного облака механический и магнитный моменты атома, находящегося в основном, невозбужденном состоянии, равны нулю. Однако эксперимент не подтвердил такой вывод квантовой теории.

Для объяснения этого и ряда подобных явлений в 1925 г. С.Гаудсмит и Дж.Уленбек  выдвинули смелую теорию о том, что сам электрон является носителем собственных механического и магнитного моментов, не связанных с движением электрона в пространстве. Эта гипотеза получила название гипотезы о спине электрона. Такое название связано с английским словом spin, которое переводится как кружение, верчение. Согласно выдвинутой теории, электрон обладает собственным моментом импульса Ls, который получил название спина, и собственным магнитным моментом . Спин электрона Ls не квантуется по величине, но квантуется его проекция на направление магнитного поля Lsz согласно формуле

  ,                                               (2.7)

спиновое квантовое число s  может принимать только два значения s = +1/2 и s = -1/2, то есть у самого электрона во внешнем поле возможны два направления спина.

Первоначально предполагалось, что спин обусловлен вращением электрона вокруг своей оси. Однако такая модель вращающегося заряженного шарика оказалась несостоятельной, так как расчет показал, что ни при каких допустимых  скоростях вращения нельзя индуцировать магнитный момент, равный по величине собственному магнитному моменту электрона. Спин электрона не имеет классического аналога. Он характеризует внутреннее свойство квантовой частицы, связанное с наличием у нее некоторой дополнительной степени свободы движения. Количественная характеристика этой степени свободы - спин  является для электрона такой же величиной как, например, его масса  и заряд.

Наличие спина электрона и возможность его пространственного квантования во внешнем поле позволило объяснить эффекты, которые наблюдались при изучении тонкой структуры оптических спектров ряда атомов. Например, тщательное исследование спектральных линий водорода в магнитном поле показало, что каждая линия состоит из двух  близких линий. Это явление получило название тонкой структуры, оно объясняется возможностью двойной ориентации спина.

В 1928 г. П. Дирак обобщил квантовую теорию на случай релятивистского движения частиц. Это уравнение значительно сложнее уравнения Шредингера по своей структуре, но из уравнения Дирака спиновое квантовое число получается так же естественно, как и три квантовых числа при решении уравнения Шредингера. Можно упрощенно сказать, что собственные механический и магнитный моменты у электрона появляются как следствие учета релятивистских эффектов в квантовой теории. Отметим также, что не только электрон, но и многие другие элементарные частицы, в том числе и не заряженные,  обладают спином.

Таким образом, каждое квантовое состояние электрона в атоме определяется набором четырех квантовых чисел n, l, m, s. При этом возможны только определенные комбинации этих квантовых чисел:

n = 1,  2,  3, … ¥ ;  l = 0, … n -1;   m  = – l, – l +1, … l -1,  l ;   s = ± 1/2.

Атомное ядро.

 

Состав ядра. Характеристики ядра.@

Как было показано ранее, любой атом состоит из ядра и двигающихся вокруг него электронов. Атомное ядро состоит из протонов и нейтронов, обозначаемых символами p и n. Протон имеет массу в 1836 раз  большую массы электрона и положительный заряд, равный заряду электрона. Нейтрон имеет массу близкую к массе протона, заряда у него нет. Обе эти частицы имеют одинаковый спин. Эти частицы часто называют нуклонами (т.е. ядерные частицы).

 Ядра атомов характеризуется  зарядом, массой, спином, радиусом и  рядом других параметров.  Количество нуклонов в ядре называют массовым числом А, а количество протонов называют зарядовым числом ядра Z, оно равно числу электронов в соответствующем атоме и атомному номеру элемента в таблице Менделеева. Количество нейронов в атомном ядре N=A-Z. Ядро элемента X обозначают условно как , например ядро кислорода . Аналогично обозначают протоны и нейтроны . Атомные ядра с одинаковыми Z, но различными А называются изотопами. В среднем на каждое значение Z приходится около трех стабильных изотопов. Например, являются стабильными изотопами ядра Si, а дейтерий и тритий являются стабильными изотопами ядер водорода. Кроме стабильных изотопов,  большинство элементов  имеют и  нестабильные изотопы, для которых характерно ограниченное время жизни. Свойства стабильных ядер остаются неизменными неограниченно долго, нестабильные же ядра испытывают различного рода превращения. Ядра с одинаковым массовым числом А называются изобарами, а с одинаковым числом нейтронов - изотопами.

Радиоактивность. Закон радиоактивного распада. Альфа, бета, гамма – излучения.@

Ядерные реакции распада некоторых тяжелых ядер могут происходить самопроизвольно (без внешнего воздействия), при этом кроме нейтронов могут испускаться и другие частицы. Такие ядра называют радиактивными, а явление самопроизвольного (спонтанного) распада ядер с испусканием одной или нескольких частиц называют радиоактивностью. Радиоактивное ядро называют материнским, а ядра, образующиеся в результате распада, называют дочерними. Дочерние ядра также могут оказаться радиоактивными. Вследствие распада число радиоактивных ядер с течением времени уменьшается.

Закон этого уменьшения можно получить теоретически на основе статистических представлений, если учесть, что все ядра идентичны по характеру процессов внутри их. Поэтому любое из ядер с одинаковой вероятностью может распасться в любой момент времени, и распад каждого ядра никаким образом не влияет на распады других ядер. Вероятность распада одного ядра за 1с называется постоянной распада и обозначается буквой λ. Как показали исследования, ядра различных элементов имеют разные постоянные распада и они не зависят ни от каких либо внешних воздействий. Если имеется N радиоактивных ядер с постоянной распада равной λ, то за малый промежуток времени dt  из них должны испытать распад dN ядер в количестве пропорциональном λ, N и dt:

-dN = λNdt ,                                                                             (3.6)

где знак – перед dN  показывает уменьшение числа ядер.  Интегрирование этого уравнения  дает

N = Noe-λt ,                                                                              (3.7)

 где Nо – число ядер в момент t=0, N – число оставшихся (не распавшихся) ядер к моменту t. Это соотношение называют основным законом радиоактивного распада. Как видно, число нераспавшихся ядер убывает со временем экспоненциально. Наряду с постоянной λ, процесс радиоактивного распада характеризуют еще периодом полураспада Т. Период полураспада Т – это время, за которое распадается половина первоначального количества ядер. Оно определяется условием No/2 = Noe-λТ, откуда следует, что

T = ln2/λ = 0,693/λ.                                                                           (3.8)

Период полураспада для различных ядер может иметь величины от долей секунды (10-7 с) до астрономических времен (1010 лет).

К основным видам радиоактивности относятся альфа, бета и гамма распады, они были открыты французским физиком  Беккерелем в 1896г.  Он обнаружил, что уран и его соединения испускают лучи или  частицы, проникающие сквозь непрозрачные тела и способные засвечивать фотопластинку. Беккерель установил, что интенсивность излучения пропорциональна только концентрации урана и не зависит от внешних условий (температуры, давления) и от того, находится ли уран в каких-либо химических соединениях. Отклонение излучения в электрическом поле показало, что оно разделяется на a-частицы (ядра гелия), b- частцы (электроны)  и  g- лучи (электромагнитное излучение с очень малой длиной волны ). Атомное ядро, испускающее g-кванты, a-, b- или другие частицы, является нестабильным или радиоактивным ядром. В природе существует порядка трехсот стабильных атомных ядер, остальные ядра радиоактивны, обычно, это радиоактивные изотопы (радиоизотопы).

При альфа-распаде происходит самопроизвольное испускание ядром α –частицы (ядра ), и это происходит по схеме

,                                                                   (3.9)

где X – символ материнского ядра, Y –дочернего.

Установлено, что α – частицы испускают только тяжелые ядра, где имеется избыток нейтронов. При распаде,  α – частицы уносят почти всю энергию и только малая часть (несколько процентов) остается у дочернего ядра. Поэтому,  кинетическая  энергия α – частицы может быть очень большой (4-10 МэВ). В воздухе при нормальном давлении пробег α - частиц составляет несколько сантиметров (их энергия расходуется на образование ионов). Покидая ядро, частице приходится  преодолевать потенциальный барьер, высота которого превосходит ее энергию,  это происходит благодаря туннельному эффекту.

Бета-распад - это самопроизвольный процесс, в котором материнское ядро превращается в другое ядро с тем же массовым числом А, но с зарядовым числом Z, отличающимся от исходного на ±1. Это связано с тем, что β – распад сопровождается испусканием электрона или позитрона (позитрон - элементарная частица сходная во всем с электроном, но имеющая положительный заряд, она является античастицей электрона) или захватом электрона из оболочки атома

                                                                             (3.7)

Число бета-активных ядер, известных в настоящее время, составляет около полутора тысяч, но только 20 из них являются естественными бета-радиоактивными изотопами. Все остальные получены искусственным путем.

Различают три типа b-распада - электронный, позитронный и К-захват:  электронный β- – распад, это реакция,   в которой ядро испускает электрон и его зарядовое число Z становится Z+1;  позитронный β+ - распад, это реакция, в которой ядро испускает позитрон  и его зарядовое число Z становится Z-1;  К – захват, это процесс, в котором ядро захватывает один из электронов электронной оболочки атома (обычно из К – оболочки) и его зарядовое число Z становится равным Z – 1, на освободившееся место в К – оболочке переходит электрон с другой оболочки, и поэтому К – захват всегда сопровождается рентгеновским излучением.

Так как в ядрах отсутствуют электроны и позитроны, очевидно, что они возникают в результате процессов, происходящих внутри ядра с протонами и нейтронами. Такие реакции были экспериментально обнаружены при изучении излучений атомных реакторов, причем для их объяснения ученому Паули в 1931г. пришлось предположить о существовании новых частиц с малой массой и не имеющих заряда. Эти частицы должны очень слабо взаимодействовать с другими частицами и обладать большой проникающей способностью, поэтому они были обнаружены только в 1956г. и названы нейтрино (n) и антинейтрино (n~). С помощью этих частиц три разновидности β – распада могут быть обусловлены следующими превращениями нуклонов в ядре:

 

                                                распад,

                              распад,                                             (3.8)                              

                                                  распад.        

             

Наличие этих частиц позволяет объяснить наблюдаемое непрерывное распределение электронов по кинетической энергии и их произвольный импульс. Если бы не было нейтрино, то электроны имели бы строго определенный импульс, равный импульсу дочернего ядра, в реальности же, энергия и импульс распределяется между электроном и нейтрино в самых разных пропорциях, поэтому в экспериментах испускаемые электроны имеют достаточно произвольные импульс и энергию.

Информация о работе Оптика