Автор работы: Пользователь скрыл имя, 24 Января 2012 в 19:34, курсовая работа
Целью курсовой работы является проведение экономико-статистического анализа эффективности производства зерна с.-х. предприятий Кировской области, а именно Котельничского и Орловского районов. Для достижения данной цели были поставлены и решены следующие задачи:
Дать экономическую характеристику изучаемого объекта
Определить обоснование объема и оценку параметров статистической совокупности
Провести экономико-статистический анализ взаимосвязей между признаками изучаемого явления методом статистических группировок, дисперсионным и корреляционно-регрессионным анализов
Сделать анализ эффективности использования факторов и рассчитать нормативы
По результатам исследования сформулировать обобщающие выводы
Введение ……………………………………………………………………….3
1 Экономическая характеристика изучаемого объекта………………….........5
1.1 Экономические показатели условий и результатов деятельности с.-х. предприятий………………………………………………………………….........5
1.2 Статистическая оценка систем показателей, используемых в исследовании………………………………………………………………………9
2 Обоснование объема и оценка параметров статистической совокупности.11
2.1 Обоснование объема выборочной совокупности……………………....11
2.2 Оценка параметров и характера распределения статистической совокупности……………………………………………………………………..12
3 Экономико-статистический анализ взаимосвязей между признаками изучаемого явления…………………………………………………………...…20
3.1 Метод статистических группировок………………………………….....20
3.2 Дисперсионный анализ………………………………………………..…23
3.3 Корреляционно-регрессионный анализ………………………………....25
Заключение…………………………………………………………………....30
Список литературы……………………
Так
во второй группе предприятий средний
уровень затрат на 1 га больше, чем в первой
на 1145 руб. При этом урожайность зерновых
во второй группе выше на 4,8 ц/га. Повышение
уровня затрат в третьей группе по сравнению
со второй приводит к увеличению урожайности
на 71,63%, а на каждые 100 руб. увеличение затрат
приходится (13,9-12,4)/(5395,5-3864,7)*
2 группировка
Проведем группировку хозяйств по урожайности ц/га, а затем по каждой группе определим следующие показатели.
Сводные данные, необходимые для расчета перечисленных показателей по каждой группе и по совокупности, представлены в приложение 1.
Используя сводные данные, составляем итоговую группировочную таблицу и проводим анализ представленных в ней показателей.
Таблица 13 – Влияние урожайности зерновых на себестоимость
Группы предприятий по урожайности, ц/га | Число хозяйств | В среднем по группам | |||
Урожайность зерновых, ц/га | Себестоимость 1 ц. в руб. | Окупаемость затрат | выручка от продажи в расчете на 1 га посева зерновых | ||
До 10,2 | 7 | 7,0 | 459 | 57,6 | 0,60 |
От 10,2 до 16,2 | 8 | 12,6 | 347,13 | 99,2 | 0,69 |
свыше 16,2 | 2 | 19,2 | 238,5 | 90,1 | 0,30 |
В среднем по совокупности | 17 | 11,1 | 380,4 | 86,6 | 0,57 |
Сравнение показателей по
3.2. Дисперсионный анализ
Для оценки существенности различия между группами по величине какого-либо признака рекомендуется использовать критерий Фишера, фактическое значение которого определяется по формуле:
где -межгрупповая дисперсия;
-остаточная дисперсия;
где - средняя групповая;
- средняя общая;
m – число групп;
n – число вариантов.
1 группировка.
Определим , используя данные таблицы 12:
где - общая вариация;
- межгрупповая вариация;
N-общее число вариантов.
Общую вариацию определяем по формуле:
,
где -варианты
-общая средняя (из таблицы13) =11,1 ц/га.
Фактическое значение F-критерия сравнивают с табличным, которое определяется при заданном уровне значимости (0,05) и числе степеней свободы для межгрупповой и остаточной дисперсии.
при и составило 3,74
Если > , утверждают о значительном различие между группами. Влияние уровня интенсивности производства на урожайность зерновых следует признать существенным.
Величина эмпирического коэффициента детерминации, равная
показывает, что на 35,7% вариация урожайности объясняется влиянием уровня затрат на 1га посева.
2 группировка.
Определим , используя данные таблицы 13:
где - общая вариация;
- межгрупповая вариация;
N-общее число вариантов.
Общую вариацию определяем по формуле:
,
где -варианты
-общая средняя (из таблицы13) =380,4руб
Фактическое значение F-критерия сравнивают с табличным, которое определяется при заданном уровне значимости (0,05) и числе степеней свободы для межгрупповой и остаточной дисперсии.
при и составило 3,74
Если < , утверждают что различие между группами обусловлено влиянием случайных факторов. Влияние уровня интенсивности производства на урожайность зерновых следует признать не существенным.
Величина эмпирического коэффициента детерминации, равная
показывает, что на 29,2% вариация урожайности объясняется влиянием уровня затрат на 1га посева.
3.3 Корреляционно-регрессионный анализ.
На основе логического анализа и системы группировок выявляется перечень признаков, который может быть положен в основу регрессивной модели связи. Если результативный признак находится в стохастической (вероятностной) зависимости от многих факторов, то уравнения, выражающие эту зависимость, называются многофакторными уравнениями регрессии.
Покажем взаимосвязь между урожайностью (X1), уровнем затрат на 1 га посева зерновых (X2) и себестоимостью производства 1 ц зерна (Y). Для этого составим вспомогательную таблицу. Для математического выражения связи между выбранными факторами может быть использовано следующее уравнение:
Параметры a0, a1, a2 определяют в результате решения системы трех нормальных уравнений (расчеты выполнены с помощью программы Microsoft Excel и представлены в приложении 3)
В результате решения данной системы на основе исходных данных по 20 предприятиям было получено следующее уравнение регрессии:
Коэффициент регрессии a1 = -34,23 показывает, что при увеличении урожайности на 1ц с га, себестоимость 1 ц зерна снижается в среднем на 34,23 руб. (при условии постоянства уровня интенсивности затрат). Коэффициент a2 = 0,08 свидетельствует о среднем увеличении себестоимости 1 ц зерна на 0,08 руб. при увеличении уровня затрат производства на 1 руб. в расчете на 1 га посева зерновых (при постоянстве урожайности).
Теснота связи между признаками, включёнными в модель, может быть определена при помощи коэффициентов множественной корреляции:
,
где , , - коэффициенты парной корреляции между x1, x2 и y. Формулы для нахождения данных коэффициентов можно представить следующим образом (расчеты коэффициентов представлены в приложении 3):
; ; ;
; ; ;
; ; ;
; ; =
В рассматриваемом случае были получены следующие коэффициенты парной корреляции: = -0,75; = 0,018; =0,57. Следовательно, между себестоимостью (y) и урожайностью зерновых (x1) связь обратная средняя, между себестоимостью (у) и уровнем материально-денежных затрат (x2) связь прямая слабая. При этом связь между урожайностью (х1) и уровнем затрат (x2) ( = 0,57). Таким образом, имеет место мультиколлинеарность. Данное явление свидетельствует о не совсем удачном выборе второго фактора.
Между всеми признаками связь тесная (R = 0,925). Коэффициент множественной детерминации (Д = R2 * 100% = 81,56%) показывает, что 81,5% вариации себестоимости производства 1 ц зерна определяется влиянием факторов, включенных в модель.
Для оценки значимости полученного коэффициента R воспользуемся критерием Фишера, фактическое значение которого определяется по формуле:
,
где n – число наблюдений,
m - число факторов.
Для рассматриваемого случая получим Fфакт =89,09.
Fтабл определяется при заданном уровне значимости (0,05) и числе степеней свободы: V1 = n – m и V2 = m – 1(приложение 4). Для нашего случая V1=15, V2=1, Fтабл = 4, 49.
Поскольку Fфакт > Fтабл, значение коэффициента R следует считать достоверным, а связь между x1, x2 и y - тесной.
Для оценки влияния отдельных факторов и резервов, которые в них заложены, также определяют коэффициенты эластичности, бета-коэффициенты, коэффициенты отдельного определения.
Коэффициенты эластичности показывают, на сколько процентов в среднем изменяется результативный признак при изменении факторного на 1% при фиксированном положении другого фактора:
= -0,99; 0,85
Таким образом, изменение на 1% урожайности ведёт к среднему снижению себестоимости на 0,99 %, а изменение на 1% уровня затрат – к среднему ее росту на 0,85 %.
При помощи β-коэфффициентов даётся оценка различия в степени варьирования вошедших в уравнение факторов. Они показывают, на какую часть своего среднего квадратического отклонения ( ) изменится результативный признак при изменении соответствующего факторного на величину своего среднего квадратического отклонения ( ). β-коэффициенты вычисляются следующим образом:
-1,07;
Это говорит о том, что наибольшее влияние на себестоимость зерна с учётом вариации способен оказать первый фактор, т.к. ему соответствует наибольшая абсолютная величина коэффициента.
Коэффициенты отдельного определения используются для определения в суммарном влиянии факторов доли каждого из них:
;
Таким
образом, на долю влияния первого
фактора приходится 80%, второго –1%.
Заключение
Одной
из главных задач экономико-