Автор работы: Пользователь скрыл имя, 06 Февраля 2011 в 16:28, лабораторная работа
Лабораторная работа и ТРИ ОТЧЕТа по ней. Вариант № 37 для студентов ВЗФЭИ. 3 курс. Содержит: файл лабораторной Эксель; Файл отчета для печати с таблицами; файл отчета чистый; инструкцию.
Для коэффициента регрессии а1 рассчитанный уровень значимости есть αр = 1,97601438191808. Так как он больше заданного уровня значимости α=0,05, то коэффициент а1 признается случайным.
5.1.2. Зависимость доверительных интервалов коэффициентов уравнения от заданного уровня надежности
Доверительные интервалы коэффициентов а0, а1 построенного уравнения регрессии при уровнях надежности Р=0,95 и Р=0,683 представлены в табл.2.7, на основе которой формируется табл.2.9.
Таблица 2.9
Границы доверительных интервалов коэффициентов уравнения
Коэффициенты | Границы доверительных интервалов | |||
Для уровня надежности Р=0,95 | Для уровня надежности Р=0,683 | |||
нижняя | верхняя | нижняя | верхняя | |
а0 | -938,9 | 99,7 | -677,9 | -161,3 |
а1 | 0,9 | 1,3 | 1 | 1,2 |
Вывод:
В генеральной совокупности предприятий значение коэффициента а0 следует ожидать с надежностью Р=0,95 в пределах -938,9 а0 99,7, значение коэффициента а1 в пределах 0,9 а1 1,3 Уменьшение уровня надежности ведет к расширению (сужению) доверительных интервалов коэффициентов уравнения.
Практическую пригодность построенной модели можно охарактеризовать по величине линейного коэффициента корреляции r:
Значение индекса детерминации R2 приводится в табл.2.5 в ячейке В79 (термин "R - квадрат").
Вывод:
Значение линейного коэффициента корреляции r и значение индекса детерминации R2 согласно табл. 2.5 равны: r = 0,91, R2 = 0,83. Поскольку и , то построенная линейная регрессионная модель связи пригодна для практического использования.
Адекватность построенной регрессионной модели фактическим данным (xi, yi) устанавливается по критерию Р.Фишера, оценивающему статистическую значимость (неслучайность) индекса детерминации R2.
Рассчитанная для уравнения регрессии оценка значимости R2 приведена в табл.2.6 в ячейке F86 (термин "Значимость F"). Если она меньше заданного уровня значимости α=0,05, то величина R2 признается неслучайной и, следовательно, построенное уравнение регрессии может быть использовано как модель связи между признаками Х и Y для генеральной совокупности предприятий отрасли.
Вывод:
Рассчитанный уровень значимости αр индекса детерминации R2 есть αр= 1,9760. Так как он больше заданного уровня значимости α=0,05, то значение R2 признается случайным и модель связи между признаками Х и Y -419,59609218437 + 1,08935518095014х неприменима для генеральной совокупности предприятий отрасли в целом.
Погрешность регрессионной модели можно оценить по величине стандартной ошибки построенного линейного уравнения регрессии . Величина ошибки оценивается как среднее квадратическое отклонение по совокупности отклонений исходных (фактических) значений yi признака Y от его теоретических значений , рассчитанных по построенной модели.
Погрешность регрессионной модели выражается в процентах и рассчитывается как величина .100.
В адекватных моделях погрешность не должна превышать 12%-15%.
Значение приводится в выходной таблице "Регрессионная статистика" (табл.2.5) в ячейке В81 (термин "Стандартная ошибка"), значение – в таблице описательных статистик (ЛР-1, Лист 1, табл.3, столбец 2).
Вывод:
Погрешность
линейной регрессионной модели составляет
.100=233,36/102,73.100=227.16%
Задача 6. Дать экономическую интерпретацию:
1) коэффициента регрессии а1;
3) остаточных величин i.
2) коэффициента эластичности КЭ;
6.1. Экономическая интерпретация коэффициента регрессии а1
В случае линейного уравнения регрессии =a0+a1x величина коэффициента регрессии a1 показывает, на сколько в среднем (в абсолютном выражении) изменяется значение результативного признака Y при изменении фактора Х на единицу его измерения. Знак при a1 показывает направление этого изменения.
Вывод:
Коэффициент регрессии а1 =1,08935518095014 показывает, что при увеличении факторного признака Среднегодовая стоимость основных производственных фондов на 1 млн руб. значение результативного признака Выпуск продукции увеличивается в среднем на 1,09 млн руб.
6.2. Экономическая интерпретация коэффициента эластичности.
С целью расширения возможностей экономического анализа явления используется коэффициент эластичности , который измеряется в процентах и показывает, на сколько процентов изменяется в среднем результативный признак при изменении факторного признака на 1%.
Средние значения и приведены в таблице описательных статистик (ЛР-1, Лист 1, табл.3).
Расчет коэффициента эластичности:
= 1,09 . 2720/2543,45 = 1,1656%
Вывод:
Значение коэффициента эластичности Кэ= 1,1656 показывает, что при увеличении факторного признака Среднегодовая стоимость основных производственных фондов на 1% значение результативного признака Выпуск продукции увеличивается в среднем на 17%.
6.3. Экономическая интерпретация остаточных величин εi
Каждый их остатков характеризует отклонение фактического значения yi от теоретического значения , рассчитанного по построенной регрессионной модели и определяющего, какого среднего значения следует ожидать, когда фактор Х принимает значение xi.
Анализируя остатки, можно сделать ряд практических выводов, касающихся выпуска продукции на рассматриваемых предприятиях отрасли.
Значения остатков i (таблица остатков из диапазона А98:С128) имеют как положительные, так и отрицательные отклонения от ожидаемого в среднем объема выпуска продукции (которые в итоге уравновешиваются, т.е. ).
Экономический интерес представляют наибольшие расхождения между фактическим объемом выпускаемой продукции yi и ожидаемым усредненным объемом .
Вывод:
Согласно таблице остатков максимальное превышение ожидаемого среднего объема выпускаемой продукции имеют три предприятия - с номерами 5, 27, 11, а максимальные отрицательные отклонения - три предприятия с номерами 15, 16, 24. Именно эти шесть предприятий подлежат дальнейшему экономическому анализу для выяснения причин наибольших отклонений объема выпускаемой ими продукции от ожидаемого среднего объема и выявления резервов роста производства.
Задача 7. Нахождение наиболее адекватного нелинейного уравнения регрессии с помощью средств инструмента Мастер диаграмм.
Уравнения регрессии и их графики построены для 3-х видов нелинейной зависимости между признаками и представлены на диаграмме 2.1 Рабочего файла.
Уравнения регрессии и соответствующие им индексы детерминации R2 приведены в табл.2.10 (при заполнении данной таблицы коэффициенты уравнений необходимо указывать не в компьютерном формате, а в общепринятой десятичной форме чисел).
Вид уравнения | Уравнение регрессии | Индекс
детерминации R2 |
Полином 2-го порядка | 8E-05x2 + 0,671x + 125,5 | 0,8353 |
Полином 3-го порядка | 2E-07x3 - 0,0016x2 + 5,0375x - 3625,8 | 0,8381 |
Степенная функция | 0,2291x1,177 | 0,8371 |
Выбор наиболее адекватного уравнения регрессии определяется максимальным значением индекса детерминации R2: чем ближе значение R2 к единице, тем более точно регрессионная модель соответствует фактическим данным.
Вывод:
Максимальное значение индекса детерминации R2 = 0,838 Следовательно, наиболее адекватное исходным данным нелинейное уравнение регрессии имеет вид 2E-07x3 - 0,0016x2 + 5,0375x - 3625,8.
ПРИЛОЖЕНИЕ
Результативные таблицы и графики
Распечатка Листа 2 Рабочего файла
ВСЕРОССИЙСКИЙ
ЗАОЧНЫЙ ФИНАНСОВО-
КАФЕДРА СТАТИСТИКИ
Информация о работе Автоматизированный априорный анализ статистической совокупности в среде MS Excel