Автор работы: Пользователь скрыл имя, 17 Декабря 2012 в 05:45, курсовая работа
Цель: состоит в характеристике особенностей работы по изучению величин в курсе математики начальной школы.
Задачи:
изучить психолого-педагогическую литературу по вопросу развивающего обучения;
изучить методико-педагогическую литературу по теме «Величины и их измерения»;
проанализировать учебники математики и программы начальной школы с целью изучения вопроса о месте величин в их содержании;
охарактеризовать значение величин в жизни и их роль в начальном курсе математики;
рассмотреть особенности изучения длины, массы и времени в курсе математики;
ВВЕДЕНИЕ…………………………………………………………………………..3
ГЛАВА 1 ВЕЛИЧИНЫ И ИХ РОЛЬ В НАЧАЛЬНОМ КУРСЕ МАТЕМАТИКИ
1.1 Общая характеристика методики изучения величин младшими школьниками…………………………………………………………………………5
1.2 Методики преподавания некоторых величин измерения……………………..8
1.3.Проблемное обучение и моделирование практических проблемных ситуаций при изучении величин…………………………………………………..16
ГЛАВА 2 ПРАКТИЧЕСКИЕ ЗАДАНИЯ ДЛЯ ИЗУЧЕНИЯ ВЕЛИЧИН
2.1 Система развивающих упражнений при изучении величин в начальном курсе математики…………………………………………………………………...19
2.2 Организация эксперимента и его результаты………………………………...27
ЗАКЛЮЧЕНИЕ…………………………………......................................................32
БИБЛИОГРАФИЧЕСКИЙ СПИСОК………
Методика изучения массы и её измерения.
Первые представления о том, что предметы имеют массу, дети получают в жизненной практике ещё до школы. До понятийные представления о массе сводятся к свойству предметов «быть легче» и «быть тяжелее».
В начальной школе учащиеся знакомятся с единицами массы: килограммом, граммом, центнером, тонной. С прибором, при помощи которого измеряют массу предметов - весами. С соотношением единиц массы.
На этапе сравнения однородных величин, выполняются упражнения в отвешивании: отвешивают 1,2,3 килограмм соли, крупы и т.д. В процессе выполнения подобных заданий, дети должны активно участвовать в работе с весами. Попутно происходит знакомство с записью полученных результатов. Далее дети знакомятся с набором гирь:1кг, 2кг, 5кг и затем приступают к взвешиванию нескольких специально подобранных предметов, масса которых выражается целым числом килограмм. При изучении грамма, центнера и тонны устанавливаются их соотношения с килограммом, составляется и заучивается таблица единиц массы. Затем приступают к преобразованию величин, выраженных в единицах массы, заменяя мелкие единицы крупными и обратно. Например, масса слона 5 тонн. Сколько это центнеров? килограммов? Вырази в килограммах: 12т 96кг, 9385г, 68ц, 52ц 5 кг; в граммах:13кг 125г, 45кг 13г, 6ц, 18кг?
Так же сравнивают массы и выполняют арифметические действия над ними. Например, вставь числа в « окошки», чтобы получились верные равенства:
7т 2ц+4ц=_ц;9т 8ц-6ц=_ц.
В процессе этих упражнений закрепляются знания таблицы единиц массы. В процессе решения простых, а затем и составных задач, учащиеся устанавливают и используют взаимосвязь между величинами : масса одного предмета -количество предметов - общая масса данных предметов, учатся вычислять каждую из величин, если известны численные значения двух других.
Масса и её измерение. Масса - одна из основных физических величин. Понятие массы тела тесно связано с понятием веса-силы, с которой тело притягивается Землёй. Поэтому вес тела зависит не только от самого тела. Например, он различен на разных широтах: на полюсе тело весит на 0,5 % больше, чем на экваторе. Однако при своей изменчивости вес обладает особенностью: отношение весов двух тел в любых условиях остаётся неизменным. При измерении веса тела путём сравнения его с весом другого выявляется новое свойство тел, которое называется массой. Представим, что на одну из чашек рычажных весов положили какое-нибудь тело, а на другую чашку положили второе тело b. При этом возможны случаи:
С математической точки зрения масса - это такая положительная величина, которая обладает свойствами:
Измерение массы производится с помощью весов. Происходит это следующим образом. Выбирают тело e, масса которого принимается за единицу. Предполагается, что можно взять и доли этой массы. Например, если за единицу массы взят килограмм, то в процессе измерения можно использовать такую его долю, как грамм: 1г= 0,01кг.
На одну чашку весов кладут тело, массу тела кого того измеряют, а на другую – тела, выбранные в качестве единицы массы, то есть гири. Этих гирь должно быть столько, чтобы они уравновесили первую чашку весов. В результате взвешивания получается численное значение массы данного тела при выбранной единице массы. Это значение приближённое. Например, если масса тела равна 5 кг 350 г, то число 5350следует рассматривать как значение массы данного тела ( при единице массы – грамм). Для численных значений массы справедливы все утверждения, сформулированные для длины, то есть сравнение масс, действия над ними сводятся к сравнению и действиям над численными значениями масс (при одной и той же единице массы).
Основная единица массы - килограмм. Из этой основной единицы образуются другие единицы массы: грамм, тонна и другие.
Промежутки времени и их измерение. Понятие времени более сложное, чем понятие длины и массы. В обыденной жизни время - это то, что отделяет одно событие от другого. В математике и физике время рассматривают как скалярную величину, потому что промежутки времени обладают свойствами, похожими на свойства длины, площади, массы.
Промежутки времени можно сравнивать. Например, на один и тот же путь пешеход затратит больше времени, чем велосипедист.
Промежутки времени можно складывать. Так, лекция в институте длится столько же времени, сколько два урока в школе.
Промежутки времени измеряют. Но процесс измерения времени отличается от измерения длины, площади или массы. Для измерения длины можно многократно использовать линейку, перемещая её с точки на точку. Промежуток времени, принятый за единицу, может быть использован лишь один раз. Поэтому единицей времени должен быть регулярно повторяющийся процесс. Такой единицей в Международной системе единиц названа секунда. Наряду с секундой используются и другие единицы времени: минута, час, сутки, год, неделя, месяц, век. Такие единицы, как год и сутки, были взяты из природы, а час, минута, секунда придуманы человеком.
Время - это продолжительность, то, что отделяет одно событие от другого, измеряемая секундами, минутами, часами. /10/
Время является самой трудной
для изучения величин. Временные
представления у детей
Временные представления у первоклассников формируется, прежде всего, в процессе их практической деятельности: режим дня, ведение календаря природы, ежедневная запись в тетрадях даты работы - всё это помогает ребёнку увидеть и осознать изменения времени, почувствовать течение времени.
Начиная с первого класса
необходимо приступать к сравнению
знакомых, часто встречающихся в
опыте детей временных
Знакомство с единицами времени способствует уточнению временных представлений детей. Значение количественных отношений единиц времени помогает сравнивать и оценивать по продолжительности промежутки времени, выраженные в тех или иных единицах. С помощью календаря учащиеся решают задачи на нахождение продолжительности события. Например, Сколько дней длятся весенние каникулы? Сколько месяцев длятся летние каникулы?
Единицы времени, с которыми знакомятся дети в начальной школе - неделя, месяц, год, век, сутки, час, минута, секунда.
В третьем классе рассматриваются простейшие случаи сложения и вычитания величин, выраженных в единицах времени. Чтобы предупредить ошибки в вычислениях, которые намного сложнее, чем вычисления с величинами, выраженными в единицах длины и массы, рекомендуется давать вычисления в сопоставлении:
30мин 45с - 20мин 58с;
30м 45см - 20м 58см.
Для развития временных представлений используются решение задач на вычисление продолжительности события, его начала и конча.
Умножение и деление. Дети изучают только умножение и деление чисел, полученных от измерения величин, на отвлеченное число. Умножение и деление этих чисел необходимо сопоставлять соответствующими действиями с отвлеченными числами. Последовательность и приемы выполнения действий следующее:
Когда учащиеся овладевают приемами умножения и деления, тогда и можно показать, что в отдельных случаях находить результат быстрее (можно даже устно), если умножать или делить число, выраженное только на крупных мерах или только в мелких.
Учащиеся для лучшего запоминания последовательности (алгоритма) выполнения действий можно предположить заметку приблизительно такого содержания:
При выполнении действий с числами, полученными от измерений не надо забывать о решении примеров с неизвестными компонентами действий.
1.3 Проблемное обучение и моделирование практических проблемных ситуаций при изучении величин
"Проблемное обучение", - по А.М. Матюшкину, - это "обучение, которое рассчитано не только на усвоение готовых знаний, умений, действий и понятий, сколько на непосредственное развитие мышления учащихся в процессе решения ими разнообразных проблем".
Проблемное обучение в
настоящее время имеет
В зависимости от уровня самостоятельности учащихся в процессе создания и решения проблемных ситуаций выделяются четыре уровня полноты проблемного обучения:
Таким образом, проблемное обучение
основывалась на тенденции усиления
роли ученика в образовании, понимании
необходимости личностного
Знания, умения и навыки, полученные в процессе решения проблемных ситуаций, более эффективно фиксируются в памяти учащегося. Но это не единственный и не главный эффект проблемного образования. В процессе обучения приоритет должен отдаваться моделированию, воссозданию практических проблемных ситуаций и их самостоятельному решению учащимися.
Можно выделить несколько функции проблемного обучения. Во-первых, при проблемном обучении существенно усиливается роль самостоятельного образования, инициативность. Самостоятельный поиск решения проблемной ситуации развивает чувство ответственности, повышает самомотивацию, волю учащихся. Учащиеся будут самостоятельно выбирать, и обрабатывать источники информации.
Например, при изучении темы "Единица измерения времени - минута", можно предложить детям прослушать две магнитофонные записи. Причём одна из них длится 30, а другая - 60 секунд. После прослушивания дети должны определить, какая из предложенных записей длится дольше. Затем нужно спросить, что нужно для того, чтобы определить продолжительность мелодий? Нужно мелодию измерить с помощью часов. Важным результатом подобной работы считаю то, что: в решении проблемы участвуют все ученики класса; механизм решения каждый открывает сам.