Автор работы: Пользователь скрыл имя, 07 Декабря 2010 в 12:17, Не определен
Курсовая работа
Абсолютная погрешность – ΔX является оценкой абсолютной ошибки измерения. Величина этой погрешности зависит от способа её вычисления, который, в свою очередь, определяется распределением случайной величины XИЗМ. При этом неравенство:
ΔX > | XИСТ − XИЗМ |,
где XИСТ – истинное значение, а XИЗМ – измеренное значение, должно выполняться с некоторой вероятностью близкой к 1. Если случайная величина XИЗМ распределена по нормальному закону, то обычно, за абсолютную погрешность принимают её среднеквадратичное отклонение. Абсолютная погрешность измеряется в тех же единицах измерения, что и сама величина.
Относительная погрешность – отношение абсолютной погрешности к тому значению, которое принимается за истинное:
Относительная погрешность является безразмерной величиной, либо измеряется в процентах.
Приведенная погрешность – погрешность, выраженная отношением абсолютной погрешности средства измерений к верхнему пределу измерения. Вычисляется по формуле
Приведенная погрешность является безразмерной величиной, либо измеряется в процентах.
Инструментальные / приборные погрешности – погрешности, которые определяются погрешностями применяемых средств измерений и вызываются несовершенством принципа действия, неточностью градуировки шкалы.
Методические погрешности – погрешности, обусловленные несовершенством метода, а также упрощениями, положенными в основу методики.
Субъективные / операторные / личные погрешности – погрешности, обусловленные степенью внимательности, сосредоточенности, подготовленности и другими качествами оператора.
В технике применяют приборы для измерения лишь с определенной заранее заданной точностью – основной погрешностью, допускаемой в нормальных условиях эксплуатации для данного прибора.
Если прибор работает в условиях, отличных от нормальных, то возникает дополнительная погрешность, увеличивающая общую погрешность прибора. К дополнительным погрешностям относятся: температурная, вызванная отклонением температуры окружающей среды от нормальной, установочная, обусловленная отклонением положения прибора от нормального рабочего положения, и т. п.
Обобщенной
характеристикой средств
Случайная погрешность – погрешность, меняющаяся (по величине и по знаку) от измерения к измерению. Случайные погрешности могут быть связаны с несовершенством приборов (трение в механических приборах и т. п.), тряской в городских условиях, с несовершенством объекта измерений. Например, при измерении диаметра тонкой проволоки, которая может иметь не совсем круглое сечение в результате несовершенства процесса изготовления, с особенностями самой измеряемой величины, например, при измерении количества элементарных частиц, проходящих в минуту через счётчик Гейгера.
Систематическая погрешность – погрешность, изменяющаяся во времени по определенному закону (частным случаем является постоянная погрешность, не изменяющаяся с течением времени). Систематические погрешности могут быть связаны с ошибками приборов (неправильная шкала, калибровка и т. п.), неучтёнными экспериментатором.
Прогрессирующая (дрейфовая) погрешность – непредсказуемая погрешность, медленно меняющаяся во времени. Она представляет собой нестационарный случайный процесс.
Грубая погрешность (промах) – погрешность, возникшая вследствие недосмотра экспериментатора или неисправности аппаратуры (например, если экспериментатор неправильно прочёл номер деления на шкале прибора или если произошло замыкание в электрической цепи).
Погрешность прямых измерений – погрешность измеряемой величины.
Погрешность косвенных измерений – погрешность вычисляемой, а не измеряемой непосредственно величины.
При решении математических задач приближёнными (численными) методами также возникают погрешности вычислений.
Погрешность решения задачи обуславливается следующими причинами:
1) математическое описание задачи является неточным, в частности неточно заданы исходные данные описания;
2) применяемый для решения метод часто не является точным: получение точного решения возникающей математической задачи требует неограниченного или неприемлемо большого числа арифметических операций, поэтому вместо точного решения задачи приходится прибегать к приближенному;
3) при вводе данных в машину, при выполнении арифметических операций и при выводе данных производятся округления.
Погрешности, соответствующие этим причинам, называют:
1) неустранимой погрешностью,
2) погрешностью метода,
3) вычислительной погрешностью.
Часто неустранимую погрешность подразделяют на две части:
а) неустранимой погрешностью называют лишь погрешность, являющуюся следствием неточности задания числовых данных, входящих в математическое описание задачи;
б) погрешность, являющуюся следствием несоответствия математического описания задачи реальности, называют, соответственно, погрешностью математической модели.
Результат действий над приближёнными числами представляет собой также приближённое число. Погрешность результата может быть выражена через погрешности первоначальных данных при помощи следующих теорем:
1.
Предельная абсолютная
2.
Относительная погрешность
3.
Относительная погрешность
4.
Относительная погрешность n-
Пользуясь этими теоремами, можно определить погрешность результата любой комбинации арифметических действий над приближенными числами.
Предельная абсолютная погрешность заведомо превосходит абсолютную величину истинной погрешности, поскольку предельное значение вычисляется в предположения, что различные погрешности усиливают одна другую. При массовых вычислениях, когда не учитывают погрешность каждого отдельного результата, пользуются следующими правилами подсчета цифр.
При соблюдении этих правил можно считать, что в среднем полученные результаты будут иметь все знаки верными, хотя в отдельных случаях возможна ошибка в несколько единиц последнего знака.
1.
При сложении и вычитании
2. При умножении и делении в результате следует сохранять столько значащих цифр, сколько их имеет приближённое данное с наименьшим числом значащих цифр.
3.
При возведении в квадрат или
куб в результате следует
4.
При извлечении квадратного и
кубического корней в
5.
Во всех промежуточных
6.
Если некоторые данные имеют
больше десятичных знаков (при
сложении и вычитании) или больше
значащих цифр (при умножении, делении,
возведении в степень, извлечении корня),
чем другие, то их предварительно следует
округлить, сохраняя лишь одну лишнюю
цифру.
1.2. Основные численные методы
1.2.1. Решение алгебраических и трансцендентных уравнений.
Общая постановка задачи. Найти действительные корни уравнения f(x) = 0, где f(x) алгебраическая или трансцендентная функция.
Точные методы решения таких уравнений подходят только к узкому классу уравнений (линейные, квадратные, биквадратные, некоторые тригонометрические, показательные, логарифмические).
В общем случае решение данного уравнения находится приближённо в следующей последовательности:
1) отделение (локализация) корня;
2) приближённое вычисление корня до заданной точности.
Отделение корня. Отделение действительного корня уравнения f(x) = 0 – это нахождение отрезка [a; b], в котором лежит только один корень данного уравнения. Такой отрезок называется отрезком изоляции (локализации) корня.
Наиболее удобным и наглядным является графический метод отделения корней:
1) строится график функции y = f(x), и определяются абсциссы точек пересечения этого графика с осью OX, которые и являются корнями уравнения f(x) = 0;
2) если f(x) – сложная функция, то её надо представить в виде так, чтобы легко строились графики функций . Так как . Тогда абсциссы точек пересечения этих графиков и будут корнями уравнения
Уточнение корня. Если искомый корень уравнения отделён, т.е. определён отрезок [a; b], на котором существует только один действительный корень уравнения, то далее необходимо найти приближённое значение корня с заданной точностью.
Такая задача называется задачей уточнения корня.
Уточнение
корня можно производить
1) метод половинного деления (бисекции);
2) метод итераций;
3) метод хорд (секущих);
4) метод касательных (Ньютона);
5) комбинированные методы.
Метод половинного деления (бисекции).
Отрезок изоляции корня можно уменьшить путём деления его пополам.
Такой метод можно применять, если функция f(x) непрерывна на отрезке [a; b] и на его концах принимает значения разных знаков, т.е. выполняется условие^
Разделим отрезок [a; b], пополам точкой , которая будет приближённым значением корня .