Как возникло и развивалось понятие функции

Автор работы: Пользователь скрыл имя, 24 Июля 2009 в 19:21, Не определен

Описание работы

историческая справка

Файлы: 1 файл

КАК ВОЗНИКЛО И РАЗВИВАЛОСЬ ПОНЯТИЕ ФУНКЦИИ.doc

— 243.50 Кб (Скачать файл)

          чтобы начальное условие задавалось лишь одним выражением для всех значений х.

            Спор  Эйлера с Даламбером был в самом разгаре, когда в него вмешался еще один математик — Даниил Бернулли (1700—1782), один из крупней-

ших знатоков того времени в области теории упругости. Он дал решение задачи о колебаниях струны с закрепленными концами и длиной l в виде бесконечной суммы:

где коэффициенты а, в, у, ... — функции от времени.

  Сам Д. Бернулли был убежден, что его  решение охватывает самый общий случай, но с ним не согласились ни Эйлер, ни Даламбер. Эйлер ошибочно считал, что это решение не может быть общим, так как не верил, что одна и та же функция может выражаться и несколькими формулами (как, например, (2)), и одной формулой (3). Ведь это противоречило общему мнению математиков того времени, считавших, что два различных выражения не могут задавать одну и ту же функцию. Ни Эйлер, ни Д. Бернулли не сумели доказать справедливость своей точки зрения. Поэтому в конце XVIII века математики, давая определение функции, уклонялись от ответа на вопрос, как же она выражается. Например, французский математик Лакруа (1765—1843) писал: «Всякое количество, значение которого зависит от одного или многих количеств, называется функцией этих последних, незави-симо от того, известно или нет, какие операции нужно применить, чтобы перейти от них к первому». Таким образом, Лакруа уже не отождествлял понятия функции и ее аналитического выражения.

  Сущность  и кажимость функции. Окончательный разрыв между понятиями функции и ее аналитического выражения произошел в начале XIX века. Французскому математику Фурье (1768—1830) удалось доказать, что любые встречающиеся в практических вопросах функции, имеющие  период 21,  можно  представить в  виде  суммы

бесконечного  ряда, похожего на ряд (3), но содержащего еще члены с косинусами и свободный член и имеющего постоянные коэффициенты. Хотя такие ряды употреблялись еще в XVIII веке, их стали называть рядами Фурье, поскольку он показал все многообразие их применений. При этом условия, необходимые для разложимости функции в ряд Фурье, были таковы, что им удовлетворяла, например, функция, график которой получается из графика, изображенного на рисунке 7, путем центральной симметрии относительно начала координат и последующего периодического продолжения на всю ось. Позднее Фурье и его последователи, среди которых следует отметить русского ученого М. В. Остроградского (1801 — 1862), изучили еще более общие разложения функций в ряды и применения таких разложений для решения задач математической физики.

  После работы Фурье стало ясно, что несущественно, каким аналитическим выражением задана функция, что это только, как говорят философы, кажимость (от слова «казаться»). А существо дела в том, какие значения принимает функция при заданных значениях аргумента. После длительного уточнения этой идеи, в котором приняли участие Фурье, Н.И.Лобачевский (1792—1856), немецкий математик Дирихле (1805—1859) и другие ученые, общепризнанным стало следующее определение:

  Переменная  величина у называется функцией переменной величины х, если каждому значению величины х соответствует единственное определенное значение величины у.

  Интерес Н. И. Лобачевского и Дирихле к определению понятия функции был связан с тем, что они занимались вопросом о разложении функций в ряды Фурье, обобщив условия разложимости, которые дал Фурье.

Тератология функций. Указанное выше

Эта   функция   была   совсем   непохожа  на   изучавшиеся в XVIII веке. Самое малое

  определение функции было очень общим и, как часто бывает в математике, охватывало гораздо больше объектов, чем этого хотелось его авторам. Например, под это опреде-ление попадает и введенная Дирихле функция:

превратить рациональное число в иррациональное, а иррациональное в рациональное и тем самым резко изме-нить значение функции. Иными словами, на сколь угодно малом отрезке эта функция принимает и значение 0, и значение 1, а потому ее график невозможно нарисовать. В то же время ясно, что D(0,75) =1, a D(корень из 2) = 0. Разумеется, такая функция не может возникнуть в каком-либо практическом вопросе именно из-за «неустойчиво-, сти» своих значений. Дирихле пытался выяснить, могут ли такие всюду разрывные функции быть разложены в, ряды Фурье, но не смог получить ответа на этот вопрос,

  В течение 25 лет после появления  работы Дирихле изучение столь «патологических» функций не вызывало особого интереса. Во всяком случае, когда немецкий математик Бернгардт Риман (1826—1866) вновь занялся изучением подобных функций, он писал:

  «При  всем несовершенстве наших знаний о  том, как изменяются в бесконечно малом силы и состояния материи в зависимости от места и времени, все же мы можем с уверенностью сказать, что те функции, на которые не распространяются условия Дирихле, в природе не встре-чаются. Тем не менее нужно думать, что случаи, не рассмотренные Дирихле, заслуживают внимания по двум причинам. Во-первых, как указывает сам Дирихле в заключение своей работы, этот вопрос стоит в теснейшей связи с основными принципами исчисления бесконечно малых и может служить для того, чтобы придать этим принципам большую ясность и определенность. С этой точки зрения исследование упомянутых случаев представляет непосредственный интерес.

  Во-вторых, область применения рядов Фурье не огра-ничивается одними лишь физическими задачами; эти ряды применяются теперь с успехом также в области чистой математики, а именно в теории чисел, и можно думать, что здесь как раз те функции, представимость которых с помощью тригонометрических рядов не была выяснена Дирихле, должны играть важную роль».

Научный авторитет Римана был очень велик. Поэтому после появления его работы возник интерес к функциям со столь необычным поведением. Но эти исследования приветствовались далеко не всеми учеными. Математики классического направления считали, что наука не должна иметь дело с объектами, столь далекими от реального мира.  Их мнение об исследованиях функций,  подобных функциям Дирихле D(x), или функций, нигде не имеющих производной (их график имеет излом в каждой точке), ярко выразил один из крупнейших математиков того времени Анри Пуанкаре (1854—1912). Он сказал: «Раньше, когда изобретали новую функцию, то имели в виду какую-нибудь практическую цель. Теперь их изобретают, не извлекая из них никакой пользы, а только для того, чтобы обнаружить недостатки в рассуждениях наших отцов». Еще резче выразился на эту тему руководитель французской математики конца XIX века Шарль Эрмит (1822—1901), который написал своему другу голландскому математику Стилтьесу (1856—1894), что он «с ужасом и отвращением отворачивается от этой разрастающейся язвы функций, не имеющих производной». Новую математику, математику разрывных функций, классики называли «тератологией» функций (наукой об уродствах функций).

Информация о работе Как возникло и развивалось понятие функции