Автор работы: Пользователь скрыл имя, 24 Июля 2009 в 19:21, Не определен
историческая справка
КАК ВОЗНИКЛО И РАЗВИВАЛОСЬ ПОНЯТИЕ ФУНКЦИИ
Писцы
и таблицы. Понятие функции уходит
своими корнями в ту далекую эпоху, когда
люди впервые поняли, что окружающие их
явления взаимосвязаны. Они еще не умели
считать, но уже знали, что, чем больше
оленей удастся убить на охоте, тем дольше
племя будет избавлено от голода, чем сильнее
натянута тетива лука, тем дальше полетит
стрела, чем дольше горит костер, тем теплее
будет в пещере.
С развитием скотоводства и земледелия, ремесла и обмена увеличилось количество известных людям зависимостей между величинами. Многие из них выражались с помощью чисел. Это позволило формулировать их словами «больше на», «меньше на», «больше во столько-то раз». Если за одного быка давали 6 овец, то двух быков обменивали на 12 овец, а трех быков — на 18 овец; если из одного ведра глины изготовляли 4 горшка, то из двух ведер глины можно было сделать 8 горшков, а из трех ведер — 12 горшков. Такие расчеты привели к возникновению понятия о пропорциональности величин.
В те времена редко приходилось сталкиваться с более сложными зависимостями. Но когда возникли первые цивилизации, образовались большие (по тогдашним масштабам) армии, началось строительство гигантских пирамид, то понадобились писцы, которые учитывали поступающие налоги, определяли количество кирпичей, необходимое для возведения дворцов, подсчитывали, сколько продовольствия надо заготовить для дальних походов. От одного поколения писцов к другому переходили правила решения задач, и чем лучше писец справлялся с ними, тем большим почетом он пользовался.
Вот, например, послание, направленное египетским писцом своему менее образованному коллеге:
«Я хочу объяснить тебе, что это такое, когда ты говоришь: «Я писец, дающий приказы армии». Ты приходишь ко мне, спрашиваешь о запасах для солдат и говоришь: «Сосчитай мне это». Ты оставляешь свою работу, и на мои плечи сваливается задача — учить тебя, как ее надо выполнить. Я ставлю тебя в тупик, когда приношу тебе повеление от твоего господина, тебе — его царскому писцу... мудрому писцу, поставленному во главе этого войска. Должно сделать насыпь для подъема в 730 локтей длины и 55 локтей ширины. Она состоит из 120 отдельных ящиков и покрывается перекладинами и тростником. На верхнем конце она имеет высоту в 60 локтей, а в середине 30 локтей; уклон ее — дважды по 15 локтей, а настил — 5 локтей. Спрашивают у военачальников, сколько понадобится кирпичей, и у всех писцов, и ни один ничего не знает. Все они надеются на тебя и говорят: «Ты искусный писец, мой друг, сосчитай это для нас поскорей. Смотри, имя твое славится. Сколько же надо для этого кирпичей?»
Чтобы решить такую задачу, надо было знать, как зависят объемы геометрических фигур от их размеров, уметь учитывать наклон насыпи. Некоторые египетские задачи показывают, что в то время умели даже вычислять объем пирамиды.
Высокого уровня достигла математика в Древнем Вавилоне. Чтобы облегчить вычисления, вавилоняне составили таблицы обратных значений чисел, таблицы квадратов и кубов чисел и даже таблицы для суммы квадратов чисел и нх кубов. Говоря современным языком, это было табличное задание функций
Пользуясь такими таблицамн, вавилоняне могли решать и обратные задачи — по заданному объему куба находить длину его стороны, т. е. извлекать кубические корни. Они умели даже решать уравнения вида хг + х2 = = а. Были у вавилонян и таблицы функций двух переменных, например таблицы сложения и умножения. Пользуясь различными таблицами, они могли вычислять и длину гипотенузы по длинам катетов, т.е. находить значения функции z = -у/ х +у2.
Разумеется, путь от появления таблиц до создания общего понятия функциональной зависимости был еще очень долог, но первые шаги по этому пути уже были сделаны.
В Древней Греции наука приняла иной характер, чем в Египте и Вавилоие. Появились профессиональные ученые, которые изучали саму математическую науку, занимались строгим логическим выводом одних утверждений из других. Многое из того, что делали древнегреческие математики, тоже могло привести к возникновению понятия о функции. Они решали задачи на построение и смотрели, при каких условиях данная задача имеет решение, изучали, сколько решений может иметь эта задача, и т.д. Древние греки нашли много различных кривых, неизвестных писцам Египта и Вавилона, изучали зависимости между отрезками диаметров и хорд в круге, эллипсе и других линиях.
Но все же древнегреческие математики не создали общего понятия функции. Возможно, здесь оказало влияние то, что к практическим приложениям математики они относились свысока. Одна из дошедших до нас легенд гласит, что когда какой-то человек попросил Евклида обучить его геометрии и задал вопрос: «А какую практическую пользу я получу, выучив все эти теоремы?», тот сказал, обращаясь к своему рабу: «Дай ему обол (мелкую греческую монету), бедняжка пришел искать пользу».
Вопросами практической математики в Греции больше занимались астрономы. Они придумали, например, долготу и широту, с помощью которых определяли положение звезд на небосводе. Астрономам приходилось решать сферические треугольники. Это послужило началом сферической тригонометрии, которая, как ни странно, была создана раньше, чем плоская. Чтобы решать тригонометрические задачи, пришлось составить таблицы зависимости между длиной хорды и величиной стягиваемой ею дуги. По сути дела, это уже были таблицы функции y = sinx (длина хорды, стягивающей дугу 2х, равна 2Rsinx).
Когда византийский император Юстиниан в 529 году н.э. запретил под страхом смертной казни математические исследования (он видел в них наследие языческой
науки, противостоявшей христианской религии), центр научных исследований переместился в арабские страны. Арабские ученые ввели новые тригонометрические функции и усовершенствовали таблицы хорд, составленные Птолемеем. Работая с тригонометрическими таблицами, они прибегали к интерполяции, т. е. к «чтению между строк таблицы». Чаще всего применяли линейную интерполяцию, считая, что между двумя известными значениями функция меняется линейно. Но живший в XI веке хорезмиец аль-Бируни разработал более точный способ интерполяции, основанный на замене данной функции квадратичной. Он применил свой способ только к таблицам синусов и тангенсов, но в одном месте указал, что этот способ «применим ко всем таблицам». Здесь впервые встречается мысль о «всех таблицах», т. е. о всевозможных зависимостях между величинами.
Графическое изображение зависимостей. Исследование общих зависимостей началось в XIV веке. Средневековая наука была чисто словесной, она опиралась на рассуждения, высказывания древних философов или на цитаты из религиозных книг. Поэтому и научные результаты выражались словесно как утверждения о связи между собой различных качеств предметов. Тогда же возникла научная школа, которая утверждала, что качества могут быть более или менее интенсивными (платье человека, свалившегося в реку, мокрее, чем у того, кто лишь попал под дождь).
Французский ученый Николай Оресм стал изображать интенсивности длинами отрезков. Когда он располагал эти отрезки перпендикулярно некоторой прямой, их концы образовывали линию, названную им «линией ин-тенсивностей» или «линией верхнего края». Современный читатель сразу узнает в ней график соответствующей функциональной зависимости. Оресм изучал даже «плоскостные» и «телесные» качества, т. е. функции, зависящие от двух или трех переменных.
Важным достижением Оресма была попытка классифицировать получившиеся графики. Он выделил три типа качеств: равномерные (т. е. с постоянной интенсивностью) , равномерно-неравномерные (для которых скорость изменения интенсивности постоянна) и неравномерно-неравномерные (все остальные), а также указал характерные свойства графиков таких качеств.
В работах Оресма и его предшественника Суайнсхеда встречаются понятия мгновенной скорости и ускорения. Оресму удалось даже с помощью геометрических соображений найти путь, проходимый телом при равноускоренном движении. Разумеется, точного определения мгновенной скорости и ускорения он не давал, но понимал, что путь при равноускоренном движении можно геометрически изобразить площадью треугольника.
Идеи Оресма намного обогнали тогдашний уровень науки. Чтобы развивать их дальше, нужно было уметь выражать зависимости между величинами не только графически, но и с помощью формул, а буквенной алгебры в то время не существовало. Лишь после того, как в течение XVI века была постепенно создана буквенная алгебра, удалось сделать следующий шаг в развитии понятия функции.
Переменные величины. На протяжении XVI и XVII веков в естествознании произошла революция, приведшая к глубочайшим изменениям не только в технике, но и в мировоззрении людей. После того как Коперник создал гелиоцентрическую систему, «остановив Солнце и двинув Землю», нельзя уже было верить, что Земля — центр мироздания, а библейские сказания непогрешимы. Казалось, что мир сорвался со своих опор, что разрываются прочнейшие связи.
Астрономия, которая до этого в основном обслуживала астрологию (лженауку, пытавшуюся предсказывать судьбы людей и государств по положению планет и звезд), стала чуть не каждый день приносить новые сведения о мире — люди узнали о спутниках Юпитера, фазах Венеры, пятнах на Солнце и т. д. Инженеры придумывали новые машины, усовершенствовали часы, мореплаватели возвращались из дальних странствий и рассказывали о новых континентах и таинственных странах, которые они открыли во время путешествий.
Все это привело к изменению мировоззрения людей — они стали смотреть на мир не как на поле приложения божественной воли, а как на механизм, управляемый своими законами. И основной задачей науки стало открытие этих законов, описание их в терминах математики. Перед математикой возникли новые задачи, недоступные для существовавшей тогда науки, имевшей дело лишь с постоянными, неподвижными объектами. Нужны были новые математические методы, которые позволили бы описывать мир, полный движения и перемен.
Одним из
первых задумался над такими задачами
основатель динамики Галилео Галилей
(1564—1642).
Он размышлял о том, как меняется скорость
падающего
тела, как движется точка на ободе колеса,
как качается
маятник. Но решить такие задачи ему удалось
лишь в
простейших случаях. Чтобы создать математический
аппарат для изучения движений, понадобилось
понятие
переменной величины.
Это понятие было введено в науку французским философом и математиком Рене Декартом (1596—1650). Жизнь Декарта до того, как он начал заниматься научными исследованиями, была весьма бурной: получив образование в иезуитском коллеже, он сначала вел рассеянную жизнь светского человека в Париже, потом стал наемным солдатом в войсках голландского полководца Морица Нассауского, принимал участие в битвах Тридцатилетней войны, а вернувшись во Францию, участвовал в осаде гугенотской крепости Ла-Рошели, знакомой читателям по роману Александра Дюма «Три мушкетера». Но потом он оставил военную службу и погрузился в занятия наукой.
Еще во время военной службы Декарт пришел к идеям о единстве алгебры и геометрии и о роли переменных величин. Значение его работ Фридрих Энгельс охарактеризовал следующим образом:
«Поворотным пунктом в математике была Декартова переменная величина. Благодаря этому в математику вошли движение и тем самым диалектика и благодаря этому же стало немедленно необходимым дифференциальное и интегральное исчисление, которое тотчас и возникает и которое было в общем и целом завершено, а не изобретено, Ньютоном и Лейбницем»1.
Декарту удалось уничтожить пропасть, лежавшую со времен древнегреческой математики, между геометрией и арифметикой. После того как в школе Пифагора открыли существование несоизмеримых отрезков, был наложен запрет на использование чисел в геометрии. Вместо этого греческие математики применяли отношения отрезков, плоских фигур и пространственных тел, не выражая их числами. Действия над числами в такой геометрической алгебре заменяли действиями над отношениями; вместо произведения чисел греки говорили о площади прямоугольника, построенного на данных отрезках, а произведение трех чисел истолковывали как объем прямоугольного параллелепипеда. Разумеется, ни о произведении более чем трех чисел, ни о сложении «площадей» с «объемами» в. этой алгебре не было и речи. Любопытно, однако, что греческий математик Папп, живший в III веке н. э., писал: «... не существует ничего, что заключало бы больше, чем три измерения. Однако незадолго до нас стали позволять себе выражаться подобным образом, не указывая, впрочем, при этом что-нибудь сколько-нибудь вразумительное».
Чтобы освободить алгебру от несвойственного ей геометрического языка, Декарт ввел фиксированный единичный отрезок и стал рассматривать отношения других отрезков к нему. По сути дела, эти отношения были не чем иным, как положительными действительными числами. Благодаря такому подходу произведение двух чисел х и у удалось выразить не как площадь прямоугольника со сторонами х и у, а как длину z отрезка, где z : х = = у:1. Это позволило рассматривать и выражения, в которых слагаемые имели разные степени, например: х+ 2у2.
Декарт считал, что в основе познания лежит сравнение между собой предметов одинакового рода, их измерение, а главная роль «человеческого искусства» состоит в установлении равенств между искомыми и данными вещами. При этом отношение между вещами выражалось через отношение их мер, т. е. по сути дела через действительные числа. Тем самым, зависимости между величинами стали выражаться как зависимости между числами. Это была неявно выраженная идея числовой функции числового аргумента.
Информация о работе Как возникло и развивалось понятие функции