Автор работы: Пользователь скрыл имя, 23 Сентября 2011 в 13:30, лекция
Важность проблемы защиты атмосферы от выбросов NОХ, стимулировала увеличение объема исследований, направленных на изучение механизмов образования оксидов азота при сжигании топлива и разработку методов снижения их эмиссии. Несколько позднее начаты исследования по разработке методов очистки дымовых газов от NОХ, пригодных для энергетических котлов
К
числу эффективных
В
настоящее время достигнут
Наибольшее распространение получили каталитические методы обезвреживания отходящих газов в неподвижном слое катализатора. В связи с этим можно выделить два принципиально различных метода осуществления процесса газоочистки: стационарный и искусственно создаваемый нестационарный.
При стационарном методе обезвреживания приемлемые для практики скорости химических реакций реализуются на большинстве дешевых промышленных катализаторов при 200...600 °С. После очистки газов от пыли (до 10...20 мг/м3) и различных каталитических ядов (As, Сl2, и др.) их температура оказывается значительно ниже. Таким образом, для проведения процесса обезвреживания стационарным методом отходящие газы необходимо нагреть за счет ввода горячих дымовых газов. Отходящие горячие очищенные газы после прохождения слоя катализатора могут выбрасываться непосредственно в атмосферу или служить для нагрева исходной смеси в рекуперативных трубчатых теплообменниках. При концентрации горючих примесей в отходящих газах более 4...5 г/м3 процесс очистки рекуперацией тепла можно проводить без дополнительных затрат энергии.
Стационарным
методом обезвреживания затруднительно
переработать газы с переменными
нагрузками и изменяющимися
Промышленно освоенные каталитические методы восстановления NОХ условно можно разделить на два основных класса:
Высокотемпературное каталитическое восстановление осуществляют в присутствии газов восстановителей водорода, оксида углерода, углеводородов (пары керосина, нефтяной и природный газ). До начала реакции газы должны быть нагреты в зависимости от природы катализатора и восстановителя до 200...480 °С. Нижний предел соответствует восстановлению NОX водородом при использовании в качестве катализатора платины на носителе. Температура 480 °С необходима при восстановлении природным газом. Оксиды азота восстанавливаются до N2. Другими продуктами реакции могут быть вода и диоксид углерода.
Процесс восстановления оксидов азота горючими газами требует первоначального «выжигания» кислорода, что сопровождается повышением температуры. В случае применения природного газа (метана) «выжигание» кислорода протекает по реакции:
СН4 + 2O2 = СО2 + 2Н2О + 804,58 кДж/моль СH4.
При недостатке кислорода из метана могут образоваться водород и оксид углерода:
СН4 + 0,5O2 = СО + 2Н2 + 35,13 кДж/моль СН4.
Все три восстановителя (СН4, СО и Н2) реагируют на катализаторе с оксидом азота, восстанавливая их до элементарного азота:
NО2 + Н2 - NО + Н2O 2NО + 2Н2 ® N2 + 2Н2О
Аналогично реагируют СН4 и СО.
Так как содержание оксидов азота в большинстве случаев не превышает 0,2%, расход горючего газа собственно на процесс восстановления невелик и определяется содержанием кислорода в очищаемых газах. В отходящих газах ТЭС концентрация кислорода составляет 3...8%, а в нитрозных газах агрегатов производства слабой азотной кислоты - 2...3 %. Для поддержания восстановительной среды отношение СH4/ NОX поддерживают на уровне 0,55...0,56. Больший избыток метана приводит к появлению в газе после очистки токсичного оксида углерода.
В реальных условиях в отходящих газах после восстановления оксидов азота содержание СО составляет 0,22...О,4% по объему.
В
качестве катализаторов
Процессы неселективного высокотемпературного каталитического восстановления применительно к газам ТЭС активно развиваются в Германии. Первоначально проводят восстановление оксидов азота за счет ввода в топливные газы метана. Процесс протекает при 450 °С па катализаторе из благородных металлов. Затем на втором слое катализатора при 400 °С осуществляется окисление SO2 в SO3 с последующим получением серной кислоты. Одним из вариантов этого процесса является каталитическое восстановление NОX и SO2 метаном при недостатке кислорода до N2 и Н2S с последующим получением из Н2S товарной серы. В рассматриваемых случаях отмечается явление коррозии металла и рост затрат на восстановитель - метан.
Для
очистки дымовых газов
К недостаткам метода высокотемпературного каталитического восстановления следует отнести высокую начальную температуру ре акции, значительный расход восстановителей на «выжигание» кислорода, затраты на утилизацию тепла отходящих газов и поддержание необходимого температурного режима процесса (Т < 850 °С), появление выбросов оксида углерода.
В последнее время появились разработки катализаторов, позволяющие осуществлять восстановление оксидов азота углеводородами (прежде всего пропан-бутаном) в присутствии кислорода. Пока эти разработки не вышли за уровень лабораторных испытаний. Катализаторы для такого процесса представляют собой цеолиты типа ZSМ-5, промотированные медью или перовскиты. Процесс осуществляется при температурах 450...800 °С, времени контакта по катализатору - 0,2...0,3 с. Эффективность удаления NОX достигает 95 % при отношении концентрации оксидов азота и восстановителя (пропан-бутан) - 1:2 и содержании кислорода в очищаемых газах - 3...5 %.
Селективное каталитическое восстановление (СКВ) получило в последние годы наибольшее распространение для очистки газов от NОX. Особенностью этого процесса является взаимодействие используемого восстановителя с оксидами азота в присутствии кислорода. Таким восстановителем оксидов азота, широко применяемым в промышленных условиях, является аммиак. Помимо газообразного аммиака в процессах СКВ могут использоваться также аммиакобразующие реагенты. Это растворы аммиака: аммиачная вода, распыляемая в потоке горючего газа, после чего капли находятся в контакте с газом 2...10 с до попадания на слой катализатора или просто жидкий аммиак. Аммиак может быть получен также непосредственно перед слоем катализатора за счет конверсии метана. Для селективного восстановления NОX предложено применять также сероводород. Количество вводимого восстановителя зависит от концентрации оксидов азота и необходимой степени очистки. Кроме того, иногда аммиак вводят в значительном избытке по отношению к NОX (это имеет место при очистке горячих дымовых газов). чтобы одновременно связать присутствующий в газах диоксид серы в сульфат и (или) сульфит аммония.
Основными реакциями, протекающими при восстановлении оксидов азота в кислородсодержащей среде являются следующие:
4NН4 + 4NО + О2 ® 4N2 + 6Н2O;
8NН3 + 6NО2 ® 7N2 + 12Н2O;
4NН3 + 5O2 ® 4NO + 6Н2О;
4NН3 + ЗО2 ® 2N2 + 6Н2O;
2NН3 + 2O2 ® N2O + ЗН2O.
Для
эффективной организации
Оптимальной для протекания реакций восстановления в зависимости от катализатора и носителя считается температура 200...400 °С. Так, максимум конверсии NО на V2O5/ТiO2 наблюдается при 300 °С; при использовании V2О5/Аl2О3 оптимальные температуры для восстановления NОX составляют 400 °С. Максимальная активность в реакции восстановления NО аммиаком на катализаторе Сг2О3/Аl2О3 наблюдается при 310 °С.
Каталитическая активность в реакциях восстановления убывает в ряду:
Рt > МnO2 > V2О5 > СuО > Fе2О3 > Сг2О3 > СоО3.
Рис.2. Влияние концентрации кислорода на степень превращения NО:
1 - V2O5/TiO2; 2 - цеолит; 3 - CuO/Fe2O3; 4 - V2O5/ TiO2/SiO2; 5 - Fe2O3/Cr2O3; 6 - Al2O3/ V2O5; (на катализаторе 1-5 температура 400 °С, на катализаторе 6 -250 °С в проточно-циркуляционном реакторе с неподвижным слоем катализатора)
Информация о работе Лекции по "Природоохранные технологии в промышленной теплоэнергетике"