Механическое движение. Относительность движения. Система отсчёта. Материальная точка. Траектория. Путь и перемещение. Мгновенная скорост

Автор работы: Пользователь скрыл имя, 06 Апреля 2011 в 05:41, реферат

Описание работы

Механическим движением называют изменение положения тела (или его частей) относительно других тел. Например, человек едущий на эскалаторе в метро, находится в покое относительно самого эскалатора и перемещается относительно стен туннеля; Гора Эльбрус находится в покое относительно Земли и движется вместе с Землёй относительно Солнца.

Файлы: 1 файл

referat-11636.doc

— 245.00 Кб (Скачать файл)

Билет 22.

Фотоэффект. Законы фотоэффекта  и их объяснение. Уравнение Эйнштейна  для фотоэффекта  и постоянная Планка. Примеры практического  применения фотоэффекта.

В 1900 году немецкий физик Макс Планк высказал гипотезу: свет излучается и поглощается отдельными порциями – квантами (или фотонами). Энергия каждого фотона определяется формулой E=hv, где h – постоянная Планка, равная 6,63×10-34 Дж×с, v – частота света. Гипотеза Планка объяснила многие явления: в частности, явление фотоэффекта, открытого в 1887 году немецким учёным Генрихом Герцем и изученного экспериментально русским учёным А.Г. Столетовым.

Фотоэффект  – это явление испускания электронов веществом под действием света.

В результате исследований были установлены три закона фотоэффекта.

  1. Сила тока насыщения прямо пропорциональна интенсивности светового излучения, падающего на поверхность тела.
  2. Максимальная кинетическая энергия фотоэлектронов линейно возрастает с частотой света и зависит от его интенсивности.
  3. Если частота света меньше некоторой определённой для данного вещества минимальной частоты, то фотоэффекта не происходит.

Зависимость фототока от напряжения показана на рисунке 1.

Теорию  фотоэффекта создал немецкий учёный А. Эйнштейн в 1905 году. В основе теории Эйнштейна лежит понятие работы выхода электронов из металла и понятие  о квантовом излучении света. По теории Эйнштейна фотоэффект имеет следующее объяснение: поглощая квант света, электрон приобретает энергию hv. При вылете из металла энергия каждого электрона уменьшается на определённую величину, которую называют работой выхода вых). Работа выхода – это работа, которую необходимо затратить, чтобы удалить электрон из металла. Максимальная энергия электронов после вылета (если нет других потерь) имеет вид: Это уравнение носит название уравнение Эйнштейна.

Если  hv<Aвых, то фотоэффекта не происходит. Значит, красная граница фотоэффекта равна vmin=Aвых/h.

Приборы, в основе принципа действия которых  лежит явление фотоэффекта, называют фотоэлементами. Простейшим таким прибором является вакуумный фотоэлемент. Недостатками такого фотоэлемента являются: слабый ток, малая чувствительность к длинноволновому излучению, сложность в изготовлении, невозможность использования в цепях переменного тока. Применяется в фотометрии для измерения силы света, яркости, освещенности, в кино для воспроизведения звука, в фототелеграфах и фототелефонах, в управлении производственными процессами.

Существуют  полупроводниковые фотоэлементы, в  которых под действием света  происходит изменение концентрации носителей тока. Они используются при автоматическом управлении электрическими цепями (например, в турникетах метро), в цепях переменного тока, в качестве невозобновляемых источников тока в часах, микрокалькуляторах, проходят испытания первые солнечные автомобили, используются в солнечных батареях на искусственных спутниках Земли, межпланетных и орбитальных автоматических станциях.

С явлением фотоэффекта связаны фотохимические процессы, протекающие под действием  света в фотографических материалах. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Билет 23.

Состав  атомного ядра. Изотопы. Энергия связи  ядра атома. Цепная ядерная  энергия, условия её осуществления. Термоядерные реакции.

В 1932 году английский физик Джеймс Чедвик открыл частицы с нулевым электрическим  зарядом и единичной массой. Эти  частицы назвали нейтронами. Обозначается нейтрон n. После открытия нейтрона физики Д.Д. Иваненко и Вернер Гейзенберг в 1932 году выдвинули протонно-нейтронную модель атомного ядра. Согласно этой модели ядро атома любого вещества состоит из протонов и нейтронов. (Общее название протонов и нейтронов – нуклоны.) Число протонов равно заряду ядра и совпадает с номером элемента в таблице Менделеева. Сумма числа протонов и нейтронов равна массовому числу. Например, ядро атома кислорода состоит из 8 протонов и 16-8=8 нейтронов. Ядро атома состоит из 92 протонов и 235-92=143 нейтронов.

Химические  вещества, занимающие одно и то же место  в таблице Менделеева, но имеющие  разную атомную массу, называются изотопами. Ядро изотопов отличаются числом нейтронов. Например, водород имеет три изотопа: протий – ядро состоит из одного протона, дейтерий – ядро состоит из одного протона и одного нейтрона, тритий – ядро состоит из одного протона и двух нейтронов.

Если  сравнить массы ядер с массами  нуклонов, то окажется, что масса  ядра тяжёлых элементов больше суммы  масс протонов и нейтронов в ядре, а для лёгких элементов масса ядра меньше суммы масс протонов и нейтронов в ядре. Следовательно, существует разность масс между массой ядра и суммой масс протонов и нейтронов, называемая дефектом массы.

Так как  между массой и энергией существует связь то при делении тяжёлых ядер и при синтезе лёгких ядер должна выделяться энергия, существующая из-за дефекта масс, и эта энергия называется энергией связи атомного ядра.

Выделение этой энергии может происходить при ядерных реакциях.

Ядерная реакция – это процесс изменения заряда ядра и его массы, происходящий при взаимодействии ядра с другими ядрами или элементарными частицами. При протекании ядерных реакций выполняются законы сохранения электрических зарядов и массовых чисел: сумма зарядов (массовых чисел) ядер и частиц, вступающих в ядерную реакцию, равна сумме зарядов (массовых чисел) конечных продуктов (ядер и частиц) реакции.

Цепная  реакция деления  – это ядерная реакция, в которой частицы, вызывающие реакцию, образуются как продукты этой реакции. Необходимым условием развития цепной реакции деления является требование где k – коэффициент размножения нейтронов, т.е. отношение числа нейтронов в данном поколении к их числу в предыдущем поколении. Способностью к цепной ядерной реакции обладает изотоп урана 235U. При наличии определённых критических параметров (критическая масса – 50 кг, шаровая форма радиусом 9 см) три нейтрона, выделившиеся при делении первого ядра, попадают в три соседних ядра и т.д. Процесс идёт в виде цепной реакции, которая протекает за доли секунды в виде ядерного взрыва. Неуправляемая ядерная реакция применяется в атомных бомбах. Впервые решил задачу об управлении цепной реакцией деления ядер физик Энрико Ферми. Им был изобретён ядерный реактор в 1942 году. У нас в стране реактор был запущен в 1946 году под руководством И.В. Курчатова.

Термоядерные  реакции – это реакции синтеза лёгких ядер, происходящие при высокой температуре (примерно 107 К и выше). Необходимые условия для синтеза ядер гелия из протонов имеются в недрах звезд. На Земле термоядерная реакция осуществлена только при экспериментальных взрывах, хотя ведутся международные исследования по управлению этой реакцией. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Билет 24.

Вопрос 1. Радиоактивность. Виды излучений и  методы их регистрации. Биологическое действие ионизирующей излучений.

Радиоактивность –  это испускание ядрами некоторых элементов различных частиц, сопровождающиеся переходом ядра в другое состояние и изменением его параметров. Явление радиоактивности было открыто опытным путём французским учёным Анри Беккерелем в 1896 году для солей урана. Он заметил, что соли урана засвечивают завёрнутую во много слоёв фотобумагу невидимым проникающим излучением.

Английский физик Резерфорд исследовал радиоактивное излучение в электрических и магнитных полях и открыл три составляющие этого излучения, которые были названы a-, b-, g-излучением.

a-Распад представляет собой излучение a-частиц (ядер гелия) высоких энергий. При этом масса ядра уменьшается на 4 единицы, а заряд – на 2 единицы (рис.).

b-Распад – излучение электронов, заряд которых возрастает на единицу, массовое число не изменяется.

g-излучение представляет собой испускание возбуждённым ядром квантов света высокой частоты. Параметры ядра при этом излучении не меняются, ядро лишь переходит в состояние с меньшей энергией. Распавшееся ядро тоже радиоактивно, т.е. происходит цепочка последовательных радиоактивных превращений. Процесс распада всех радиоактивных элементов идёт до свинца. Свинец – конечный продукт распада.

Приборы, применяемые для регистрации  ядерных излучений называются детекторами ядерных излучений. Наиболее широкое применение получили детекторы, обнаруживающие ядерные излучения по производимой ими ионизации и возбуждению атомов вещества: газоразрядный счётчик Гейгера, камера Вильсона, пузырьковая камера. Существует также метод фотоэмульсий, основанный на способности пролетающей частицы создавать в фотоэмульсии скрытое изображение. След пролетевшей частицы виден на фотографии после проявления.

Радиоактивные излучения оказывают сильное  биологическое действие на ткани  живого организма, заключающееся в  ионизации атомов и молекул среды. Возбуждённые атомы и ионы обладают сильной химической активностью, поэтому в клетках организма появляются новые химические соединения, чуждые здоровому организму. Под действием ионизирующей радиации разрушаются сложные молекулы и элементы клеточных структур. В человеческом организме нарушается процесс кроветворения, приводящий к дисбалансу белых и красных кровяных телец. Человек заболевает белокровием, или так называемой лучевой болезнью. Большие дозы излучения приводят к смерти.

Информация о работе Механическое движение. Относительность движения. Система отсчёта. Материальная точка. Траектория. Путь и перемещение. Мгновенная скорост