Автор работы: Пользователь скрыл имя, 20 Марта 2011 в 10:44, контрольная работа
В феодальном обществе научные знания были подчинены религиозному сознанию, и им было не позволено выходить за рамки, установленные верой. Становление буржуазных социально-экономических отношений привело к постепенному ослаблению религиозного восприятия мира и укреплению рациональных представлений о мироздании.
Система «хищник - жертва»
Это пример колебательного
режима по численности хищника и жертвы
во времени. Подъем числа зайцев сопровождается
выраженным увеличением числа лисиц. Это
естественно, так как рост числа зайцев
приводит к увеличению количества пищи
для лисиц, что увеличивает скорость их
размножения. Однако активное поедание
зайцев лисами приводит в дальнейшем к
падению численности жертвы. В свою очередь,
это приводит к последующему снижению
численности хищника. С другой стороны,
снижение численности хищника приводит
к повышению численности жертвы и последующему
росту числа хищника. Такова природа колебаний
численности хищника и жертвы, которые
наблюдаются в экосистеме. Эта модель
объясняет широко распространенные в
различных экосистемах «волны жизни»,
т. е. периодические колебания численности
различных видов животных.
Однако расчеты показывают, что в системе
«хищник - жертва» возможен и другой режим,
при котором наблюдается очень быстрое
уменьшение численности и полное вымирание
жертвы и следующее за ним вымирание хищника.
Морфогенез
Биологическая структура, как раз является той самой открытой нелинейной системой, которая препятствует своему разрушению за счет способности к самоорганизации. Но расплатой за устойчивость и прочие преимущества живой материи, является зависимость от поступления энергии извне, как необходимого условия существования неравновесной биосистемы. Фактически, жизнь есть не что иное, как система по понижению собственной энтропии за счет повышения энтропии окружающей среды. Морфогенез – формообразование при высоких затратах энергии в диссипативных структурах с самоорганизацией за счет рассеяния энергии в тепло; рост организма или его частей, сопряженный с закладкой и развитием пространственной структуры, направляемый и взаимоопределяемый различными факторами. Отдельные клетки бывают недифференцированными, специализация развивается в соответствующем окружении других клеток и под их воздействием. В морфогенезе есть критические фазы, сопряженные с существенной перестройкой генома (точки бифуркации), когда можно вмешаться в развитие и либо нарушить его, либо переключить на другой канал, при этом возникают наследуемые и воспроизводимые в опыте изменения. Иногда активный морфогенез захватывает отдельный орган или структуру, неожиданного и отличающегося типа самоорганизации от всего организма – рога плотнорогих, плодовые тела грибов, цветы растений, брачный наряд рыб и т.д.
Как
выясняется, переход от Хаоса к Порядку
вполне поддается математическому моделированию.
И более того, в природе существует не
так уж много универсальных моделей такого
перехода. Качественные переходы в самых
различных сферах действительности (в
природе и обществе – его истории, экономике,
демографических процессах, духовной
культуре и др.) подчиняются подчас одному
и тому же математическому сценарию. Методами
синергетики было осуществлено моделирование
многих сложных самоорганизующихся систем:
от морфогенеза в биологии и некоторых
аспектов функционирования мозга до флаттера
крыла самолета, от молекулярной физики
и автоколебательных процессов в химии
до эволюции звезд и космологических процессов,
от электронных приборов до формирования
общественного мнения и демографических
процессов. Синергетика убедительно показывает,
что даже в неорганической природе существуют
классы систем, способных к самоорганизации.
История развития природы – это история
образования все более и более сложных
нелинейных систем. Такие системы и обеспечивают
всеобщую эволюцию природы на всех уровнях
ее организации – от низших и простейших
к высшим и сложнейшим (человек, общество,
культура).
Вопрос № 3: Исторические этапы развития жизни на Земле
Происхождение жизни - одна из трех важнейших мировоззренческих проблем наряду с проблемой происхождения нашей Вселенной и проблемой происхождения человека. В античности сложились два противоположных подхода к решению этой проблемы. Первый, религиозно-идеалистический, исходил из того, что жизнь является следствием божественного творческого акта. В основе второго, материалистического подхода лежало представление о том, что под влиянием естественных факторов живое может возникнуть из неживого, органическое из неорганического. Появление жизни на Земле пытались объяснить и занесением ее из других космических миров. Гипотеза космозоев (космических зачатков), в соответствии с которой жизнь является вечной и зачатки, населяющие мировое пространство, могут переноситься с одной планеты на другую. Гипотеза панспермии: во Вселенной вечно существуют зародыши жизни, которые движутся в космическом пространстве под давлением световых лучей; попадая в сферу притяжения планеты, они оседают на ее поверхности и закладывают на этой планете начало живого. Сейчас уже определенно выяснено, что «азбука» живого сравнительно проста: в любом существе, живущем на Земле, присутствует 20 аминокислот, пять оснований, два углевода и один фосфат. Существование небольшого числа одних и тех же молекул во всех живых организмах убеждает нас, что все живое должно иметь единое происхождение.
С позиций современной науки жизнь возникла из неживого вещества в результате эволюции материи, является результатом естественных процессов, происходивших во Вселенной. Жизнь - это свойство материи, которое ранее не существовало и появилось в особый момент истории нашей планеты Земля. Возникновение жизни явилось результатом процессов, протекавших сначала миллиарды лет во Вселенной, а затем многие миллионы лет на Земле. От неорганических соединений к органическим, от органических к биологическим - таковы последовательные стадии, по которым осуществлялся процесс зарождения жизни.
Возраст Земли исчисляется примерно 5 млрд лет. Жизнь существует на Земле более 3,5 млрд лет. Геологическая история Земли подразделяется на крупные промежутки - эры; эры - на периоды, периоды - на века. Это разделение относительное, потому что резких разграничений между этими подразделениями не было. Но все же именно на рубеже соседних эр, периодов преимущественно происходили существенные геологические преобразования: горообразовательные процессы, перераспределение суши и моря, смена климата и проч. Кроме того, каждое подразделение характеризовалось качественным своеобразием флоры и фауны.
Геологические эры Земли:
Катархей (от образования Земли 5 млрд лет назад до зарождения жизни);
Архей, древнейшая эра (3,5 млрд - 2,6 млрд лет);
Протерозой (2,6 млрд - 570 млн лет);
Палеозой (570 млн - 230 млн лет) со следующими периодами:
кембрий (570 млн - 500 млн лет);
ордовик (500 млн - 440 млн лет);
силур (440 млн - 410 млн лет);
девон (410 млн - 350 млн лет);
карбон (350 млн - 285 млн лет);
пермь (285 млн - 230 млн лет);
Мезозой (230 млн - 67 млн лет) со следующими периодами:
триас (230 млн - 195 млн лет);
юра (195 млн- 137 млн лет);
мел (137 млн - 67 млн лет);
Кайнозой (67 млн - до нашего времени) со следующими периодами и веками:
палеоген (67 млн - 27 млн лет):
палеоцен (67-54 млн лет)
эоцен (54-38 млн лет)
олигоцен (38-27 млн лет)
Неоген (27 млн - 3 млн лет):
миоцен (27-8 млн лет)
плиоцен (8-3 млн лет)
Четвертичный (3 млн - наше время):
плейстоцен (3 млн - 20 тыс. лет)
голоцен (20 тыс. лет- наше время)
Докембрий - собирательное название геологического времени от возникновения нашей планеты до начала кембрийского периода (570 млн лет назад). Докембрийская жизнь не отличалась богатством форм и быстротой эволюционных преобразований. Однако он занимает 88% всей истории Земли, в это время происходили события фундаментального значения.
Катархей. Происхождение жизни связано с протеканием определенных химических реакций на поверхности первичной планеты. На начальных этапах своей истории Земля представляла собой раскаленную планету. Вследствие вращения при постепенном снижении температуры атомы тяжелых элементов перемещались к центру, а в поверхностных слоях концентрировались атомы легких элементов (водорода, углерода, кислорода, азота), из которых и состоят тела живых организмов. При дальнейшем охлаждении Земли появились химические соединения: вода, метан, углекислый газ, аммиак, цианистый водород, а также молекулярный водород, кислород, азот. Дальнейшее снижение температуры обусловило переход ряда газообразных соединений в жидкое и твердое состояние, а также образование земной коры. Когда температура поверхности Земли опустилась ниже 100° С произошло сгущение водяных паров. Длительные ливни с частыми грозами привели к образованию больших водоемов. В результате активной вулканической деятельности из внутренних слоев Земли на поверхность выносилось много карбидов - соединений металлов с углеродом. При взаимодействии их с водой выделялись углеводородные соединения. Горячая дождевая вода как хороший растворитель имела в своем составе растворенные углеводороды, а также газы, соли и другие соединения, которые могли вступать в химические реакции. Второй этап биогенеза характеризовался возникновением более сложных органических соединений, в частности белковых веществ в водах первичного океана. Благодаря высокой температуре, грозовым разрядам, усиленному ультрафиолетовому излучению относительно простые молекулы органических соединений при взаимодействии с другими веществами усложнялись и образовывались углеводы, жиры, аминокислоты, белки и нуклеиновые кислоты. Таким образом, воды первичного океана постепенно насыщались разнообразными органическими веществами, образуя «первичный бульон». Этот «органический бульон» стал колыбелью зародившейся жизни.
В палеонтологии
четко различаются эпохи
Архей. Первый ароморфоз, следы которого доступны для наблюдения, - образование клеточной мембраны, отделившей «внутренности» организма от окружающей среды. Образование мембранной структуры считается самым трудным этапом химической эволюции жизни Биологические мембраны - это агрегаты белков и липидов, способные отграничить вещества от среды и придать упаковке молекул прочность. С момента возникновения химических различий между внутренней и внешней средой можно определенно употреблять сам термин «организм». Древнейшие достоверные окаменелости имеют возраст около 3,5 млрд лет. Они представляют собой остатки микроорганизмов с клеточной оболочкой. Таким образом, уже через один миллиард лет после формирования планеты Земля на ней существовали первые клеточные организмы. Примитивные одноклеточные - прокариоты - были хозяевами Земли более 2 млрд лет. Первый период развития органического мира на Земле характеризуется тем, что первичные живые организмы были анаэробными (жили без кислорода), питались и воспроизводились за счет «органического бульона», иначе говоря, они питались готовыми органическими веществами, синтезированными в ходе химической эволюции, т.е. были гетеротрофами. Но это не могло длиться долго, ведь резерв органического вещества быстро убывал. Первый великий качественный переход в эволюции живой материи был связан с «энергетическим кризисом»: «органический бульон» был исчерпан, и следовало выработать способы формирования крупных молекул биохимическим путем, внутри клеток, с помощью ферментов. В этой ситуации преимущество было у тех клеток, которые могли получать большую часть необходимой им энергии непосредственно из солнечного излучения.
Довольно неопределенной остается датировка следующего крупнейшего ароморфоза - появления фотосинтеза. С его помощью стало возможным получать ресурсы (углекислый газ) для синтеза органических веществ прямо из воздуха, отдавая взамен молекулярный кислород. Такие организмы называются автотрофными. Это значит, что их питание осуществляется внутренним путем благодаря световой энергии. Все дальнейшее развитие земной жизни было определено этим великим изобретением природы. Поначалу накопление кислорода в атмосфере шло медленно из-за низкой скорости обмена веществ у примитивных микроорганизмов. Потребовалось около полутора миллиардов лет, чтобы содержание кислорода в воздухе достигло 1% от современного значения. Но этот рубеж - точка Пастера - был наконец достигнут, что привело к целому ряду важнейших последствий. Во-первых, начиная с точки Пастера, дыхание становится эффективным способом обеспечения организма энергией. Многократно ускоряется обмен веществ, а с ним и темпы эволюции. Во-вторых, из кислорода О2 в верхних слоях атмосферы образуется озон О3, защищающий от ультрафиолетового излучения Солнца. Это дало организмам возможность подняться в приповерхностный слой океана, наиболее богатый питательными веществами и солнечной энергией, а затем и выйти на сушу. В-третьих, накопление свободного кислорода увеличило давление отбора на первые организмы. Дело в том, что для них химически активный кислород атмосферы был токсичен! Можно сказать, что около двух миллиардов лет назад разразился первый в истории Земли глобальный экологический кризис - загрязнение окружающей среды ядовитыми отходами жизнедеятельности в виде свободного кислорода. Борьба за существование в таких жестких условиях оказалась еще одним фактором, подстегнувшим эволюцию.
Протерозой. Следующим крупным эволюционным шагом, совершенным примерно 1,3 млрд лет назад, было возникновение эукариот - организмов, клетка которых имеет ядро. У эукариотов ДНК уже собрана в хромосомы. В ядре сосредоточена наследственная информация и аппарат для ее передачи. Такая клетка воспроизводится без каких-либо существенных изменений. Особенностью эукариот является «разделение труда» между ядром и органеллами клетки. Митохондрии обеспечивают клетку энергией, хлоропласты с помощью фотосинтеза производят сахара, на рибосомах синтезируются белки. Существует предположение, что органеллы происходят от бактерий, когда-то проникших в клетку в качестве паразитов. Паразитизм постепенно превратился в симбиоз, который перерос в единый эукариотический организм. Дальнейшая эволюция эукариотов была связана с разделением на растительные и животные клетки. Растительные клетки покрыты жесткой целлюлозной оболочкой, которая их защищает. Но одновременно такая оболочка не дает им возможности свободно перемещаться и получать пищу в процессе передвижения. Вместо этого растительные клетки совершенствуются в направлении использования фотосинтеза для накопления питательных веществ. Животные клетки имеют эластичные оболочки и потому не теряют способности к передвижению; это дает им возможность самим искать пищу - растительные клетки или другие животные клетки. Животные клетки эволюционировали в направлении совершенствования способов передвижения и способов поглощать и выделять крупные частицы через оболочку. Следующим важным этапом развития жизни и усложнения ее форм было возникновение примерно 900 млн лет назад полового размножения. Половое размножение состоит в механизме слияния ДНК двух индивидов и последующего перераспределения генетического материала, при котором потомство похоже на родителей, но не идентично им. Достоинство полового размножения в том, что оно значительно повышает видовое разнообразие и резко ускоряет эволюцию, позволяя быстрее и эффективнее приспосабливаться к изменениям окружающей среды. Следующий после возникновения эукариот крупный ароморфоз - многоклеточность. Первые попытки прорыва на этот уровень организации предприняли еще сине-зеленые водоросли. Однако в полной мере использовали преимущества многоклеточности (крупные размеры тела, специализация разных групп клеток на выполнении разных функций) лишь эукариоты. Произошло это от 1 млрд до 700 млн лет назад в конце докембрийского отрезка истории Земли.
Палеозой:
Кембрий. Около 600 млн лет назад в истории жизни на Земле произошло крупнейшее событие, которое назвали «большим взрывом эволюции животных». В течение кембрийского периода природа создает все известные планы строения тела, почти все из ныне живущих и вымерших типов животных. В течение последующих 100 млн лет эволюция шла в основном по пути усовершенствования и специализации форм, возникших в кембрии. Основные ароморфозы, возникшие в это время, трудно даже перечислить. Пожалуй, наиболее характерным из них был жесткий скелет (поначалу в виде внешнего панциря, в который были закованы широко распространенные в кембрийских морях трилобиты, составлявшие около 60% кембрийской фауны). Возникновение защитных приспособлений свидетельствует о появлении хищников и ужесточении борьбы за существование, что придало эволюции дополнительное ускорение. В растительном мире распространились многоклеточные водоросли, которые перешли к прикрепленному образу жизни, т. е. укрепились на твердом дне.
Информация о работе Создание классической механики и экспериментального естествознания