Создание классической механики и экспериментального естествознания

Автор работы: Пользователь скрыл имя, 20 Марта 2011 в 10:44, контрольная работа

Описание работы

В феодальном обществе научные знания были подчинены религиозному сознанию, и им было не позволено выходить за рамки, установленные верой. Становление буржуазных социально-экономических отношений привело к постепенному ослаблению религиозного восприятия мира и укреплению рациональных представлений о мироздании.

Файлы: 1 файл

Классическая механика+.doc

— 187.50 Кб (Скачать файл)

    Другим  важным достижением Галилея было открытие закона инерции. Первоначально  люди полагали, что движущийся объект имел бы естественную тенденцию к замедлению движения, если бы к нему не были приложены силы, которые заставляли его двигаться дальше. Однако опыты Галилея показали, что это общее представление ошибочно. Если бы силы, задерживающие движение, такие, например, как трение, можно было бы исключить, падающий предмет стремился бы продолжать движение бесконечно. Этот важный принцип является одним из первостепенных принципов физики. Галилей делает открытие большой научной и практической значимости – открывает закон изотропности колебаний маятника, который сразу же нашел применение в медицине, астрономии, географии, прикладной механике. Он сформулировал принцип относительности движения (все системы, которые движутся прямолинейно и равномерно друг относительно друга (т.е. инерциальные системы) равноправны между собой в отношении описания механических процессов); открыл закон независимости действия сил (принцип суперпозиции). Еще более важным представляется то, что Галилей сумел суммировать результаты целой серии экспериментов в математической формуле. Широкое использование математических формул и математических методов – важнейшая характерная черта современной науки.

    Блестящие открытия Галилей совершил в астрономии. Галилей был первым ученым, начавшим наблюдения неба при помощи построенных им зрительных труб. После изобретения зрительной трубы он усовершенствовал ее и превратил в телескоп с 30-кратным приближением, с помощью которого совершил ряд выдающихся астрономических открытий. Галилей открыл четыре спутника Юпитера, обращающиеся вокруг этой планеты. Это открытие неопровержимо доказало, что не только Земля может быть центром обращения небесных светил. Наблюдая солнечные пятна, Галилей обнаружил, что они перемещаются по солнечной поверхности, и сделал вывод, что Солнце вращается вокруг своей оси. После этого легко было допустить, что вращение вокруг оси свойственно всем небесным телам, а не только Земле. Наблюдая звездное небо, Галилей убедился, что число звезд гораздо больше, чем может видеть невооруженный глаз. Огромная белая полоса на небе - Млечный Путь - при рассмотрении ее в зрительную трубу отчетливо разделялась на отдельные звезды. Так подтверждалась мысль о том, что звезд и солнц бесконечное множество, а значит, просторы Вселенной безграничны и неисчерпаемы.

    За  признание своих открытий Галилею пришлось вести борьбу с церковной ортодоксией. Церковь дважды вела процессы против Галилея. Галилей был вынужден перейти к методам нелегальной борьбы. Но он продолжал исследование законов движения тел под действием сил в земных условиях. Основные итоги этих исследований он изложил в книге «Диалог о двух системах мира». Книга Галилея вызвала восторг в научных кругах всех стран и бурю негодования среди церковников. Инквизиция пригрозила Галилею не только осудить его как еретика, но и уничтожить все его рукописи и книги. От него требовали признания ложности учения Коперника. Галилей вынужден был уступить. Но тем не менее после приговора и в годы, последовавшие за процессом, Галилей продолжал разработку рациональной динамики. Исследования Галилея заложили надежный фундамент динамики, а также методологии классического естествознания. Дальнейшие исследования лишь углубляли и укрепляли этот фундамент. С полным основанием Галилея называют «отцом современного естествознания».

    Рене  Декарт

    Первым "концептуалистом" Нового времени принято считать Рене Декарта. Он автор первой новоевропейской теории происхождения мира, Вселенной. Хотя мир создан Богом, Бог не принимает участия в его дальнейшем развитии. Мир развивается по естественным законам. Бог является "конструктором" всего сущего и он мог воспользоваться для осуществления своих замыслов научным вариантом конструкции мира. Материя по Декарту делима до бесконечности (атомов и пустоты не существует) а движение он объяснял с помощью понятия вихрей. Онородная материя дробима на части, имеющие различные формы и размеры. В процессе дробления и взаимодействия формируются три группы элементов материи – легкие и разнообразной формы (огонь); отшлифованные частицы круглой формы (воздух); крупные, медленно движущиеся частицы (земля). Все эти частицы вначале двигались хаотически и были хаотически перемешаны. Однако, законы природы таковы, что они достаточны, чтобы заставить части материи расположиться в весьма стройном порядке. Благодаря этим законам материя принимает форму нашего «весьма совершенного мира». Декарт поставил математику основой и образцом метода, оставил только определения, которые укладываются в математические объяснения. Понимание мира Декартом снимает различие между естественным и искусственным. Растение такой же равноправный механизм, как и часы, сконструированные человеком. С той лишь разницей, что искусство Высшего Творца отличается от искусства творца конечного (человека). Декарт предложил свой метод, в основу которого легли следующие правила: начинать с простого и очевидного; путем дедукции получать более сложные высказывания; действовать таким образом, чтобы не упустить ни одного звена (непрерывность цепи умозаключений) для чего нужна интуиция, которая усматривает первые начала, и дедукция, которая дает следствия из них.

    Декарт  – основоположник научной космогонии. Частицы, находясь в непрерывном круговом движении, образуют материю «неба», раздробленные части выпираются к центру, образуя материю «огня». Этот огонь из тонких частиц, находящихся в бурном движении, формирует звезды и Солнце. Более массивные частицы вытесняются к периферии, смешиваются и образуют тела планет. Каждая планета вовлекается своим вихрем в круговое движение около центрального светила. Космогоническая теория Декарта объясняла суточное движение Земли вокруг своей оси и ее годовое движение вокруг Солнца. Но не могла объяснить других особенностей Солнечной системы.

    Ньютонианская революция

    Результаты  естествознания XVII в. обобщил Исаак  Ньютон. Именно он завершил постройку фундамента нового классического естествознания. Ньютон впервые сознательно отказался от поисков конечных причин явлений и законов и ограничился изучением точных количественных проявлений этих закономерностей в природе. Обобщив результаты своих предшественников в стройную теоретическую систему знания (ньютоновскую механику), Ньютон стал родоначальником классической теоретической физики. Он сформулировал ее цели, разработал ее методы и программу развития. В основе ньютоновского метода лежит экспериментальное установление точных количественных закономерных связей между явлениями и выведение из них общих законов природы методом индукции.

    Вершиной  научного творчества Ньютона стала  его теория тяготения и провозглашение первого универсального закона природы – закона всемирного тяготения. Идею о том, каким образом можно вычислить силу тяготения, Ньютон проводит на основе вычисления центростремительного ускорения Луны в ее обращении вокруг Земли. Уменьшив это ускорение пропорционально квадрату расстояния Луны от Земли, он устанавливает, что оно равно ускорению силы тяжести у земной поверхности. Ньютон сделал вывод, что для всех планет имеет место притяжение к Солнцу, что все планеты тяготеют друг к другу с силой, обратно пропорциональной квадрату расстояния между ними. Далее Ньютон выдвинул тезис, в соответствии с которым сила тяжести пропорциональна лишь количеству материи (массе) и не зависит от формы материала и других свойств тела. Первый закон Ньютона: "Если бы на тело не действовало никаких сил вообще, то оно после того, как ему сообщили начальную скорость, продолжало бы двигаться в соответствующем направлении равномерно и прямолинейно". Следовательно, никаких свободных движений нет, а любое криволинейное движение возможно лишь под действием силы. Третий закон Ньютона: "Каждое действие вызывает противодействие, равное по величине и противоположно направленное, или, иными словами, взаимное действие двух тел друг на друга равно по величине и противоположно по направлению" .Наиболее полно все это выражается вторым законом Ньютона: «Ускорение, сообщаемое телу массой, прямо пропорционально приложенной силе и обратно пропорционально массе».

    Теория Ньютона утверждала, что сила тяготения универсальна и проявляется между любыми материальными частицами, независимо от их конкретных качеств и состава, и всегда пропорциональна их массам и обратно пропорциональна квадрату расстояния между ними. Законы движения планет предстали как следствия закона всемирного тяготения. Причину и природу тяготения Ньютон не считал возможным обсуждать за неимением на этот счет достаточного количества фактов. Поэтому и физику, построенную на ее основе, и физическую картину мира, завершенную Ньютоном, можно назвать феноменологической. Закон всемирного тяготения стал физическим фундаментом небесной механики.

    Нельзя  не сказать о математических достижениях  Ньютона, без которых не было бы и  его гениальной теории тяготения. Для математического описания, сведения в единую систему движений и взаимодействий тел самого различного рода, качеств, масштабов Ньютон впервые объединил число, геометрическую фигуру и движение. Свой метод характеристик исследуемых движений Ньютон назвал «методом флюксий». В математике Ньютону принадлежат также важнейшие труды по алгебре, аналитической и проективной геометрии и др.

    Оптика  – важнейшая часть физики, более молодая, чем механика. Большую трудность для зарождающейся оптики представляло объяснение цветов. Поэтому по праву вторым великим достижением Ньютона было открытие того, что белый свет состоит из света различных цветов и, следовательно, цветной свет имеет более простую природу, чем белый. Ученый доказал, что при помощи призмы белый цвет можно разложить на составляющие его цвета. Он построил первый в мире отражательный зеркальный телескоп – рефлектор. Затем ученый сделал вручную еще один телескоп больших размеров и лучшего качества.

    Ньютон  вывел теоретически, что центры планет описывают эллипсы и что в фокусе их орбит находится центр Солнца. Сила, заставляющая тела падать на Землю, оказалась равной той, которая управляет движением Луны. Открытие Ньютона привело к созданию новой картины мира, согласно которой все планеты, находящиеся друг от друга на колоссальных расстояниях, оказываются связанными в одну систему. Дальнейшие исследования Ньютона позволили ему определить массу и плотность планет и Солнца. Он установил, что наиболее близкие к Солнцу планеты отличаются наибольшею плотностью. Ньютон доказал, что Земля представляет собой шар, расширенный у экватора и сплюснутый у полюсов, а также зависимость приливов и отливов от действия Луны и Солнца на воды морей и океанов.

    Ньютон  рассмотрел главную космологическую проблему: конечна или бесконечна Вселенная. Он пришел к выводу, что лишь в случае бесконечности Вселенной материя может существовать в виде множества космических объектов – центров гравитации. В конечной Вселенной материальные тела рано или поздно слились бы в единое тело в центре мира. Это было первое строгое физико-теоретическое обоснование бесконечности мира. Ньютон задумывался и над проблемой происхождения упорядоченной Вселенной. Однако здесь он столкнулся с задачей, для решения которой еще не располагал научными фактами. Он первым отчетливо осознал, что одних только механических свойств материи для этого недостаточно. Ньютон справедливо утверждал, что только из одних неупорядоченных механических движений частиц не могла возникнуть вся сложная организация мира. Для него тайной являлось начало орбитального движения планет. Оставалось прибегнуть лишь к некоей необъяснимой сверхсиле – Богу. Поэтому Ньютон вынужден был допустить божественный «первый толчок», благодаря которому планеты приобрели орбитальное движение, а не упали на Солнце. Понадобилось всего полвека для того, чтобы в естествознании сформировалась идея естественной эволюции материи, опровергающая божественный «первотолчок».

    Крупнейшим  достижением научной  революции стало крушение средневековой картины мира и формирование новых черт мировоззрения, позволивших создать науку Нового времени. Родился новый образ мира, с новыми религиозными и антропологическими проблемами. Произошло формирование знания, которое объединяет теорию и практику, науку и технику. Именно опиравшаяся на строгие количественные законы физика определила новую физическую картину мира, которая на два века стала основным направляющим и контролирующим фактором в развитии естествознания. На ее основе формировались все более сложные и совершенные модели Вселенной. XVIII век - век просвещения, возрождающихся материалистических учений, набиравшего темп экспериментального естествознания. Основу метода, составляющего ядро естествознания, образует логический вывод утверждений из принятых гипотез и последующая их эмпирическая проверка. Научная революция порождает нового ученого – экспериментатора, сила которого в эксперименте, благодаря новым измерительным приборам становящегося все более и более точным.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   Вопрос  № 2 Самоорганизация в открытых неравновесных системах

   Синергетика

   Человек всегда стремился постичь природу  сложного, пытаясь ответить на вопросы: как ориентироваться в сложном и нестабильном мире? Какова природа сложного и каковы законы его функционирования и развития? В какой степени предсказуемо поведение сложных систем? Современное естествознание ищет пути теоретического моделирования самых сложных систем, которые присущи природе, – систем, способных к самоорганизации, саморазвитию. Именно это изучает наука синергетика. Термин «синергетика» предложил в начале 70-х гг. XX в. немецкий физик Г. Хакен. Синергетикаэто междисциплинарное направление  научных исследований, предмет которого – общие  закономерности самоорганизации в природных и социальных системах. Синергетика открывает для точного, количественного, математического исследования такие стороны мира, как его нестабильность, многообразие путей изменения и развития, раскрывает условия существования и устойчивого развития сложных структур, позволяет моделировать катастрофические ситуации и т.п. Синергетика рассматривает системы самой разнообразной природы – физические, химические, биологические, социальные, – процессы самоорганизации в которых, как выяснилось, описываются одними и теми же математическими моделями и, следовательно, подчиняются универсальным закономерностям.

Информация о работе Создание классической механики и экспериментального естествознания