Автор работы: Пользователь скрыл имя, 26 Мая 2010 в 20:01, Не определен
Содержание……………………………………………………………………3
Введение………………………………………………………………………4
1. Законы термодинамики……………………………………………………5
1.1 Первый закон термодинамики………………………………………...5
1.2 Второй закон термодинамики…………………………………………8
1.3 Третий закон термодинамики………………………………………..14
2. Перспективы энергетики………………………………………………....18
2.1 Солнечное излучение………………………………………………...18
2.2 Биомассовая энергетика……………………………………………..20
2.3 Энергия воды…………………………………………………………20
2.4 Энергия водорода…………………………………………………….21
2.5 Геотермальная энергия………………………………………………24
Заключение…………………………………………………………………..26
Список использованной литературы……………………………………….27
Важное значение для развития термодинамики имели установленные Ж.Л. Гей-Люссаком законы – закон теплового расширения и закон объемных отношений. Б.Клапейрон установил зависимость между физическими величинами, определяющими состояние идеального газа (давлением, объемом и температурой), обобщенное Д.И. Менделеевым.
Таким образом, концепции классической
Термодинамики описывают состояния теплового
равновесия и равновесные (протекающие
бесконечно медленно, поэтому время в
основные уравнения не входит) процессы.
2.
Перспективы энергетики.
2.1. Солнечное излучение.
В результате интенсивного использования не возобновляемых источников энергии для отопления, транспортных средств, строительно-дорожных машин сельскохозяйственных агрегатов и различных бытовых устройств, образуется огромное количество оксидов углерода, серы и азота. Все это способствует повышению температуры земной и водной поверхности, вызывает загрязнение окружающей среды, выпадение кислотных дождей, а так же стимулирует интенсивное таяние льдов, повышение уровня океанов, затопление огромных территорий суши, зарождение циклов и ураганов, охватывающих целые континенты. Эти явления ведут к широкомасштабному разрушению сельскохозяйственных угодий, исчезновению лесов и животного мира, повышенному размножению вредных насекомых, возрастанию частоты засух, лесных пожаров, проливных дождей, наводнений и т.п.
Поэтому актуальна разработка альтернативных решений использования энергии на основе нетрадиционных подходов, а так же с использованием возобновляемых источников.3 Исследования в области использования возобновляемых источников энергии связаны с созданием и практическим применением гелио- и ветроустановок, гидроэлектростанций и различного рода преобразователей. Вырабатываемые при этом энергоресурсы, кроме использования по прямому назначению, могут также накапливаться различными аккумулирующими системами.
Среди перечисленных видов возобновляемых источников, прежде всего необходимо остановиться на энергии солнечного излучения [2, 5], поток которой составляет примерно 3,8 1026 Вт и представлен всем спектром электромагнитных волн. При этом энергетическая освещенность земной атмосферы достигает примерно 1,4 кВт/м 2, а непосредственно поверхности нашей планеты – около 1 Вт/м 2. За двое суток Солнце посылает нам столько
тепла и света, сколько способны дать при сжатии все земные запасы угля, нефти, газа и сланцев. Однако пока не создано достаточно экономичного способа преобразования солнечной энергии в электрическую, хотя уже и имеются разработки, приемлемые для практической реализации.
Например, солнечные батареи, питающие электроэнергией космические объекты. Коэффициент полезного действия таких систем, работающих по схеме фотоэлектрического преобразования, уже превышает 20% и может быть заметно увеличен в случае использования вместо химически чистых полупроводников типа кремния, арсенида галлия и сульфацида кремния, менее дорогостоящих, но более эффективных материалов. Одним из них может быть соединение сурьмы с алюминием. Можно ожидать заметного повышения коэффициента полезного действия также и от солнечной батарей, созданных на основе сплавов сурьмы с идием. Они могут быть перспективными при
освоении
области инфракрасного
Наряду с солнечным излучением, перспективно использование и энергии ветра. Согласно данным, последняя квалифицируется как «солнечная», поскольку возникает в результате нагрева атмосферного воздуха солнечными лучами.
Ветровая энергия давно используется в мореплавании, а также для приведения в движение мельничных колес. С недавних пор она находит применение и для выработки электроэнергии.
Ветровые установки, как правило, сооружаются
на принципе использования воздушных
потоков, к тому же они громоздки, сложны
и даже при диаметре колеса 150 м улавливается
не более половины энергии ветра и в узком
диапазоне скоростей. К тому же стоимость
выработанной ими электроэнергии заметно
превышает стоимость энергоресурсов,
получаемых по другим технологиям. Кроме
того, одной из самых сложных проблем,
______________________________
3 Девинс Д. Энергия / Пер. с англ. – М.:Энергоатомиздат, 1985. – 369с.
препятствующих
более широкому распространению
ветроэнергетических установок, является
непостоянство действия ветра и часто
меняющаяся его скорость. В этом направлении
следует обратить внимание на совершенствование
ветровых установок для конвенционных
электростанций и способов аккумулирования
электроэнергии.
2.2. Биомассовая энергетика.
К исключительно ценным возобновляемым
источникам энергии относится биогумус,
состоящий из птичьего помета, навоза
животных, отходов жизнедеятельности
человека и разлагающейся растительности.
Уже накоплен опыт переработки перечисленных
отходов, в результате чего получаются
экологически чистые энергетические ресурсы
в виде биогаза (70% СН4 и 30% СО2)
с теплотой горения 5500-6000 ккал/м 3.
При этом одновременно осуществляется
обеззараживание как вредных для природной
среды патогенных микроорганизмов, так
и выработка высококачественных удобрений
и кормовых добавок в виде различных
модификаций витаминов группы В. Причем
после биообработки органических удобрений
заметно сокращается или вовсе исключается
применение ядохимикатов для борьбы с
сорняками. Производство биогаза, высококачественных
удобрений и кормовых добавок способствует
улучшению экологической обстановки в
местах образования и переработки биогумуса.
2.3. Энергия воды.
Еще один вид возобновляемых источников энергии – это энергия падающей воды. Преобразование потенциальной энергии падающей воды в механическую энергию вращения с целью приведения в действие мельничных колес и других механизмов, известно давно. Физические принципы преобразования энергии падающей воды в электрическую заключается в том, что упомянутая среда под напором, создаваемым плотиной гидроэлектростанций, направляется в водовод, который заканчивается турбиной. Благодаря этому турбина воздействует на вал, связанный с ротором генератора, вращающимся в магнитном поле статора. Здесь все зависит от потенциальной энергии падающей воды и коэффициента полезного действия ее преобразования в электрическую.
Мощность гидроэлектростанций определяется как количеством воды, так и перепадом между водной поверхностью водохранилища и уровнем размещения гидроагрегата. Для получения одинаковой мощности на высоконапорной гидроэлектростанции требуется меньший расход воды. Причем от напора воды зависят габариты турбины, что в целом способствует удешевлению стоимости гидросооружения.
Следует отметить, что строительство крупных гидросооружений может оказать негативное влияние на природную среду. Так, возведение высоких плотин и создание огромных водохранилищ ведет к истреблению уникальной флоры и фауны, затоплению больших площадей сельскохозяйственных угодий, сокращению стока рек и т.п. При этом с водой выносится значительное количество насосов, которые, оседая в водохранилищах, со временем снижают их мощность. Кроме того, строительство крупных гидроэлектростанций создает значительное давление на малый участок земной поверхности, что вызывает большие перенапряжения в подстилающих грунтах и создает благоприятные условия для инициирования землетрясений, особенно в сейсмоопасных зонах. Естественно, что в таких местах предпочтение следует отдавать строительству микро- и малых гидроэлектростанций.
2.4 Энергия водорода
Кроме описанных, к важным направлениям производства энергоресурсов на основе водной и воздушной сред относится получение кислорода, водорода и его перекиси (пероксида). Кислород и водород используется в устройствах по сварке, пайке, резке и других видах обработки материалов. В то же время, как показывает опыт, водород является идеальным энергетическим ресурсом, например, при электролизе воды. Сам по себе способ весьма прост. При прохождении постоянного электрического тока через элемент, состоящий из катода и анода, помещенных в водный электролит, на катоде выделяется водород, а на аноде – кислород. Как правило, устройства для получения кислорода и водорода состоят из электролизеров, разделительных колонок, работающих за счет разности плотностей газожидкостных смесей, холодильников, регуляторов давления газов, циркуляционного и подпитывающего насосов. Может быть и другой вариант устройства для получения кислорода и водорода, который состоит из электролизера, вертикально размещенных разделительных колонок упомянутых газов, их промывателей и регуляторов давления с массивными поплавками.
В последнее время ведутся разработки других способов получения водорода, в том числе биологическим, биохимическим и синтетическим методам. В первом из них для разложения воды на водород и кислород используют микроорганизмы. Количество получаемого водорода по этому способу пока не значительно, но в перспективе можно ожидать появления разработки более эффективных его модификаций. Биохимический метод предлагает при разложении водной среды в реакторе использовать ферменты, однако и в этом случае водород тоже производится в малых количествах. Основу синтетического метода составляет фотолиз при полном отсутствии биологических компонентов. Нужно отметить, что хотя некоторые из перечисленных методов в настоящее время и недостаточно производительны, следует продолжать работы по повышению их эффективности.
Учитывая, что водород служит идеальным энергоносителем, необходимо найти более надежные способы его аккумулирования и последующего хранения. Согласно литературным данным, он может находиться в газообразной или жидкой формах, а также в качестве составной части какого-либо химического соединения. Однако следует иметь в виду, что аккумулирование водорода в виде сжатого газа имеет ограничения из-за низких соотношений между его количеством и массой баллонов, в которых он содержится. Что же касается хранения водорода в жидкой форме, то здесь также имеются сложности, поскольку он сжижается при температуре -252, 87оС при расходе значительной энергии. При этом его криогенное хранение представляет сложную проблему и требует многогранных исследований. Наиболее приемлемым вариантом компактного и безопасного хранения водорода является его содержимое в составе особого класса компаудов - металлических гидридов. Последнее достигается тем, что водород под давлением принудительно вступает во взаимодействие с очищенной поверхностью какого-либо металла и, находясь в атомарной форме, растворяется в его межкристаллитном пространстве. При очень высоких давлениях отношение количества атомов водорода к атомам металла больше единицы, а часто может превышать и двойку. В этом случае образуются химические соединения – гидриды. В принципе они могут создаваться при взаимодействии с любым чистым элементом и с большой частью двойных сплавов.
По разработанному нами способу источником
аккумулирования энергии, пригодным для
использования при работе всех видов техники,
в том числе и любых транспортных средств,
может быть водород, который по сравнению
с другими видами горючего, наиболее дешевый
и экологически чистый. В случае перевода
двигателей внутреннего сгорания в
современных машинах на такое водородное
горючее необходимо лишь незначительно
изменить конструкцию карбюратора и отрегулировать
угол опережения зажигания для приведения
его в соответствие с необходимым количеством
воздуха и скоростью распространения
фронта пламени. В процессе эксплуатации
таких двигателей внутреннего сгорания
выхлопными продуктами являются водяной
пар и небольшое количество азота. Причем
его выделение можно регулировать при
помощи реакторов каталитической конверсии
нашей разработки. Кроме того, при использовании
водорода в качестве горючего для транспортных
средств отсутствуют не сгоревшие углеводороды,
соединения свинца и окиси углерода, которые
существенно загрязняют окружающую среду.
Информация о работе Перспективы энергетики с точки зрения термодинамики