Автор работы: Пользователь скрыл имя, 26 Мая 2010 в 20:01, Не определен
Содержание……………………………………………………………………3
Введение………………………………………………………………………4
1. Законы термодинамики……………………………………………………5
1.1 Первый закон термодинамики………………………………………...5
1.2 Второй закон термодинамики…………………………………………8
1.3 Третий закон термодинамики………………………………………..14
2. Перспективы энергетики………………………………………………....18
2.1 Солнечное излучение………………………………………………...18
2.2 Биомассовая энергетика……………………………………………..20
2.3 Энергия воды…………………………………………………………20
2.4 Энергия водорода…………………………………………………….21
2.5 Геотермальная энергия………………………………………………24
Заключение…………………………………………………………………..26
Список использованной литературы……………………………………….27
Сибирский государственный аэрокосмический университет
имени академика
М. Ф. Решетнева
Институт
машиноведения и инноватики
Кафедра
управления качеством и сертификации
Курсовая работа
по дисциплине «Теоретические основы
прогрессивных
технологий»
Тема:
«Перспективы энергетики
с точки зрения термодинамики»
Сычева Н.Р.
Красноярск, 2010г.
КУРСОВАЯ
РАБОТА
Сычева Наталья Рафаиловна, студентка группы ЭЗУ-91/3.
На тему: «Перспективы энергетики с точки зрения термодинамики». Курсовая работа по дисциплине« Теоретические основы прогрессивных технологий», -город Красноярск; Сибирский Государственный Аэрокосмический университет.
В данной курсовой работе рассматривается вопрос развития энергетики (перспектив) с точки зрения термодинамических законов. Работа состоит из двух пунктов, в которых рассмотрены основные темы, способствующие раскрытию темы данной работы.
Курсовая работа состоит из введения,
основной части, заключения и списка литературы
по данной проблематике.
Содержание
Содержание……………………………………………………
Введение…………………………………………………………
1. Законы термодинамики……………………………………………
1.1 Первый закон термодинамики………………………………………..
1.2 Второй закон термодинамики…………………………………………8
1.3 Третий закон термодинамики…………
2. Перспективы энергетики………………………………………………..
2.1 Солнечное излучение……………………………
2.2 Биомассовая энергетика……………………
2.3 Энергия воды………………………………………………
2.4 Энергия водорода……………………………………
2.5 Геотермальная энергия………………………………………………24
Заключение……………………………………………………
Список использованной
Введение
Современная термодинамика занимает особое место в естествознании, частности является теоретической основой всей современной энергетики.
Исторически термодинамика возникла в результате требований, предъявляемых к физике со стороны теплотехники в связи с практической необходимостью найти теоретические основы для создания тепловых машин, в частности тепловых двигателей, определения путей повышения их мощности и экономичности.
В начале своего становления термодинамика ограничивалась рассмотрением узкого круга вопросов, связанных с требованиями теплотехники, о взаимопревращениях теплоты и механической работы. Теперь термодинамика намного расширила свои пределы. Взаимные превращения теплоты в химическую и электрическую энергию, электрохимические превращения, взаимопревращения тепла и электричества в энергию электромагнитного излучения – вот новые предметы изучения термодинамики.
Современная термодинамика представляет собой обширный и разнообразный по своему применению раздел естествознания.
Актуальностью выбранной темы является то, что огромные природные резервы человечество тратило постепенно в течение тысячелетий своего существования. Технический процесс непрерывно увеличивает скорость истощения этих запасов. Вот почему все чаще начинают раздаваться голоса о перспективе энергетического голода и целесообразности экономии природных ресурсов. И это толкает ученых и инженеров на поиски новых путей, которые помогут удовлетворить будущие потребности в энергии.
Были поставлены задачи: рассказать о
трех законах термодинамики, рассмотреть
различные перспективы энергетики.
1.
Законы термодинамики
1.1
Первый закон термодинамики
Первое начало термодинамики (закон сохранения энергии к термодинамическим процессам) гласит: при сообщении термодинамической системе например, пару в тепловой машине) определенного количества теплоты в общем случае происходит при превращении внутренней энергии системы и она совершает работу против внешних сил.
Первый закон термодинамики (закон сохранения энергии для тепловых процессов) определяет количественное соотношение между изменением внутренней энергии системы дельта U, количеством теплоты Q, подведенным к ней, и суммарной работой внешних сил A, действующих на систему.
Первый закон термодинамики - Изменение внутренней энергии системы при ее переходе из одного состояния в другое равно сумме количества теплоты, подведенного к системе извне, и работы внешних сил,
действующих на нее:
Первый закон термодинамики - количество
теплоты, подведенное к системе, идет на
изменение ее внутренней энергии и на
совершение системой работы над внешними
телами:
Частные случаи первого закона термодинамики для изопроцессов.
При изохорном процессе объем газа остается постоянным, поэтому газ не совершает работу. Изменение внутренней энергии газа происходит благодаря теплообмену с окружающими телами:
При изотермическом процессе количество теплоты, переданное газу от нагревателя, полностью расходуется на совершение работы:
При изобарном расширении газа подведенное к нему количество теплоты расходуется как на увеличение его внутренней энергии и на совершение работы газом:
Адиабатный процесс - термодинамический процесс в теплоизолированной системе.
Теплоизолированная
система - система, не обменивающаяся энергией
с окружающими телами.
Формула КПД теплового двигателя:
Здесь Q1 - количество теплоты,
полученное рабочим телом,
Q2 - количество теплоты, отданное
холодильнику.
A - полезная работа.
Формула Карно для оценки максимального
КПД теплового двигателя:
T1 - температура нагревателя, T2
- температура холодильника.1
Цикл
Карно 1
Выше отмечалось, что первым, кто поставил теплоту в связь с работой, был Карно, но его работа в силу запоздалой публикации не оказала решающего воздействия на формирование первого начала термодинамики. Однако идея о том, что теплота - не субстанция, а сила ( энергия),одной из форм которой и является теплота, причем эта сила, в зависимости от условий, выступает в виде движения, электричества, света, магнетизма, теплоты, которые могут превращаться друг в друга, существовала в умах исследователей. Для превращения этой идеи в ясное и точное понятие, необходимо было определить общую меру этой силы.
Это сделали независимо друг от друга, Р.Майер, Д. Джоуль и Г. Гельмгольц. Р. Майер первым сформулировал закон эквивалентности механической работы и теплоты и рассчитал механический эквивалент теплоты (1842 г.) Д. Джоуль экспериментально подтвердил предположение о том, что теплота является формой энергии и определил меру превращения механической работы в теплоту. Г. Гельмгольц в 1847 г. Математически обосновал закон сохранения энергии, показав его всеобщий характер. Подход всех трех авторов закона сохранения энергии был различным. Майер отталкивался больше от общих положений, связанных с аналогией между ”живой силой” (энергией), которые приобретали тела при своем падении
___________________
1 http://interlibrary.narod.ru/ Доброборский Б.С.Термодинамика биологических систем.
Глава 1.Термодинамика и «Всеобщий закон биологии» Бауэра
в соответствии с законом всемирного тяготения, и теплотой, которую отдавали сжатые газы.
Джоуль шел от экспериментов по выявлению возможности использования электрического двигателя как практического источника энергии (это обстоятельство и заставляло его задуматься над вопросом о количественной эквивалентности работы и теплоты). Г.Гельмгольц пришел к открытию закона сохранения энергии, пытаясь применить концепцию движения Ньютона к движению большого числа тел, которые находятся под влиянием взаимного притяжения. Его вывод о том, что сумма силы и напряжения (т.е. кинетической и потенциальной энергией) остается постоянной, является формулировкой закона сохранения энергии в его наиболее общей форме. Этот закон - величайшее открытие XIX века. Механическая работа, электричество и теплота – различные формы энергии. Д Бернал так охарактеризовал его значение: ”Он объединил много наук и находился в исключительной гармонии с тенденциями времени“.
Энергия стала универсальной валютой
физики – так сказать, золотым стандартом
изменений, происходивших во вселенной.
То, что было установлено представляло
собой твердый валютный курс для обмена
между валютами различных видов энергии:
между калориями теплоты, килограммами
работы и киловатт- часами электричества.
Вся человеческая деятельность в целом
– промышленность, транспорт, освещение
и, в конечном счете, питание и сама жизнь
– рассматривалась с точки зрения зависимости
от этого одного общего термина – энергия.
1.2 Второй закон термодинамики.
Второе начало термодинамики – закон возрастания энтропии. В замкнутой (т.е. изолированной в тепловом и механическом отношении) системе энтропия либо остается неизменной (если в системе протекают обратимые, равновесные процессы), либо возрастает (при неравновесных процессах) и в состоянии равновесия достигаем максимума. Существуют и другие эквивалентные формулировки второго начала термодинамики, принадлежащие разным ученым: невозможен переход теплоты от тела более холодного к телу, более нагретому, без каких-либо других изменений в системе или окружающей среде (Р. Клаузиус); невозможно создать периодически действующую, т.е. совершающую какой-либо термодинамический цикл, машину, вся работа которой сводилась бы к поднятию некоторого груза (механической работе) и соответствующему охлаждению теплового резервуара (В. Томсон, М. Планк); невозможно построить вечный двигатель второго рода, т.е. тепловую машину, которая в результате совершения кругового процесса (цикла) полностью преобразует теплоту, получаемую от какого-либо одного “неисчерпаемого” источника (океана, атмосферы и т.д.) в работу ( В. Оствальд). В. Томсон (лорд Кельвин) Сформулировав принцип невозможности создания вечного двигателя второго рода, в 1852 году пришел к формированию концепции “тепловой смерти” вселенной. Во-вторых восстановление механической энергии в прежнем количестве не может быть осуществлено. В – третьих, в будущем Земля очутится в непригодном для жизни человека состоянии.
Информация о работе Перспективы энергетики с точки зрения термодинамики