Моделирование как метод научного познания

Автор работы: Пользователь скрыл имя, 18 Декабря 2012 в 09:16, реферат

Описание работы

Моделирование в научных исследованиях стало применяться еще в глубокой древности и постепенно захватывало все новые области научных знаний: техническое конструирование, строительство и архитектуру, астрономию, физику, химию, биологию и, наконец, общественные науки. Большие успехи и признание практически во всех отраслях современной науки принес методу моделирования ХХ в. Однако методология моделирования долгое время развивалась независимо отдельными науками. Отсутствовала единая система понятий, единая терминология. Лишь постепенно стала осознаваться роль моделирования как универсального метода научного познания.

Файлы: 1 файл

Моделирование как метод научного познания.doc

— 1,001.00 Кб (Скачать файл)

Особую роль в науке играют математические модели, строительный материал и инструменты  этих моделей - математические понятия. Они накапливались и совершенствовались в течении тысячелетий. Современная математика дает исключительно мощные и универсальные средства исследования. Практически каждое понятие в математике, каждый математический объект, начиная от понятия числа, является математической моделью. При построении математической модели, изучаемого объекта или явления выделяют те его особенности, черты и детали, которые с одной стороны содержат более или менее полную информацию об объекте, а с другой допускают математическую формализацию. Математическая формализация означает, что особенностям и деталям объекта можно поставить в соответствие подходящие адекватные математические понятия: числа, функции, матрицы и так далее. Тогда связи и отношения, обнаруженные и предполагаемые в изучаемом объекте между отдельными его деталями и составными частями можно записать с помощью математических отношений: равенств, неравенств, уравнений. В результате получается математическое описание изучаемого процесса или явление, то есть его математическая модель.

Изучение математической модели всегда связанно с некоторыми правилами действия над изучаемыми объектами. Эти правила отражают связи между причинами и следствиями.

Построение математической модели - это центральный этап исследования или проектирования любой системы. От качества модели зависит весь последующий анализ объекта. Построение модели - это процедура не формальная. Сильно зависит от исследователя, его опыта и вкуса, всегда опирается на определенный опытный материал. Модель должна быть достаточно точной, адекватной и должна быть удобна для использования.

Математическое  моделирование.

Классификация математических моделей.

Математические модели могут  быть детерменированными и стохастическими.

Детерменированные модели- это модели, в которых установлено взаимно-однозначное соответствие между переменными описывающими объект или явления.

Такой подход основан на знании механизма функционирования объектов. Часто моделируемый объект сложен и  расшифровка его механизма может  оказаться очень трудоемкой и длинной во времени. В этом случае поступают следующим образом: на оригинале проводят эксперименты, обрабатывают полученные результаты и, не вникая в механизм и теорию моделируемого объекта с помощью методов математической статистики и теории вероятности, устанавливают связи между переменными, описывающими объект. В этом случае получаютстахостическую модель. В стахостической модели связь между переменными носит случайный характер, иногда это бывает принципиально. Воздействие огромного количества факторов, их сочетание приводит к случайному набору переменных описывающих объект или явление. По характеру режимов модель бывают статистическими и динамическими.

Статистическая модель включает описание связей между основными переменными моделируемого объекта в установившемся режиме без учета изменения параметров во времени.

В динамической модели описываются связи между основными переменными моделируемого объекта при переходе от одного режима к другому.

Модели бывают дискретными и непрерывными, а также смешанного типа. В непрерывных переменные принимают значения из некоторого промежутка, в дискретных переменные принимают изолированные значения.

Линейные модели- все функции и отношения, описывающие модель линейно зависят от переменных и не линейные в противном случае.

Математическое  моделирование.

Требования,предъявляемые к моделям.

1.      Универсальность - характеризует полноту отображения моделью изучаемых свойств реального объекта.

    1. Адекватность - способность отражать нужные свойства объекта с погрешностью не выше заданной.
    2. Точность - оценивается степенью совпадения значений характеристик реального объекта и значения этих характеристик полученных с помощью моделей.
    3. Экономичность - определяется затратами ресурсов ЭВМ памяти и времени на ее реализацию и эксплуатацию.

Математическое  моделирование.

Основные этапы  моделирования.

1. Постановка  задачи.

Определение цели анализа  и пути ее достижения и выработки  общего подхода к исследуемой  проблеме. На этом этапе требуется  глубокое понимание существа поставленной задачи. Иногда, правильно поставить задачу не менее сложно чем ее решить. Постановка - процесс не формальный, общих правил нет.

2. Изучение теоретических  основ и сбор информации об  объекте оригинала.

На этом этапе подбирается  или разрабатывается подходящая теория. Если ее нет, устанавливаются причинно - следственные связи между переменными описывающими объект. Определяются входные и выходные данные, принимаются упрощающие предположения.

3. Формализация.

Заключается в выборе системы  условных обозначений и с их помощью записывать отношения между составляющими объекта в виде математических выражений. Устанавливается класс задач, к которым может быть отнесена полученная математическая модель объекта. Значения некоторых параметров на этом этапе еще могут быть не конкретизированы.

4. Выбор метода  решения.

На этом этапе устанавливаются  окончательные параметры моделей  с учетом условия функционирования объекта. Для полученной математической задачи выбирается какой- либо метод решения или разрабатывается специальный метод. При выборе метода учитываются знания пользователя, его предпочтения, а также предпочтения разработчика.

5. Реализация  модели.

Разработав алгоритм, пишется  программа, которая отлаживается, тестируется  и получается решение нужной задачи.

6. Анализ полученной информации.

Сопоставляется полученное и предполагаемое решение, проводится контроль погрешности моделирования.

7. Проверка адекватности  реальному объекту.

Результаты, полученные по модели сопоставляются либо с имеющейся об объекте информацией или проводится эксперимент и его результаты сопоставляются с расчётными.

Процесс моделирования является итеративным. В случае неудовлетворительных результатов этапов 6. или 7. осуществляется возврат к одному из ранних этапов, который мог привести к разработке неудачной модели. Этот этап и все последующие уточняются и такое уточнение модели происходит до тех пор, пока не будут получены приемлемые результаты.

1   Математическое моделирование

1.1.1   1. Что такое математическое моделирование? 

С середины XX в. в самых различных областях человеческой деятельности стали широко применять математические методы и ЭВМ. Возникли такие новые дисциплины, как «математическая экономика», «математическая химия», «математическая лингвистика» и т. д., изучающие математические модели соответствующих объектов и явлений, а также методы исследования этих моделей.

Математическая модель — это приближенное описание какого-либо класса явлений или объектов реального мира на языке математики. Основная цель моделирования — исследовать эти объекты и предсказать результаты будущих наблюдений. Однако моделирование — это еще и метод познания окружающего мира, дающий возможность управлять им.

Математическое моделирование и связанный с ним компьютерный эксперимент незаменимы в тех случаях, когда натурный эксперимент невозможен или затруднен по тем или иным причинам. Например, нельзя поставить натурный эксперимент в истории, чтобы проверить, «что было бы, если бы...» Невозможно проверить правильность той или иной космологической теории. В принципе возможно, но вряд ли разумно, поставить эксперимент по распространению какой-либо болезни, например чумы, или осуществить ядерный взрыв, чтобы изучить его последствия. Однако все это вполне можно сделать на компьютере, построив предварительно математические модели изучаемых явлений.

1.1.2   2. Основные этапы математического моделирования

1) Построение модели. На этом этапе задается некоторый «нематематический» объект — явление природы, конструкция, экономический план, производственный процесс и т. д. При этом, как правило, четкое описание ситуации затруднено. Сначала выявляются основные особенности явления и связи между ними на качественном уровне. Затем найденные качественные зависимости формулируются на языке математики, то есть строится математическая модель. Это самая трудная стадия моделирования.

2) Решение математической задачи, к которой приводит модель. На этом этапе большое внимание уделяется разработке алгоритмов и численных методов решения задачи на ЭВМ, при помощи которых результат может быть найден с необходимой точностью и за допустимое время.

3) Интерпретация полученных следствий из математической модели. Следствия, выведенные из модели на языке математики, интерпретируются на языке, принятом в данной области.

4) Проверка адекватности модели. На этом этапе выясняется, согласуются ли результаты эксперимента с теоретическими следствиями из модели в пределах определенной точности.

5) Модификация модели. На этом этапе происходит либо усложнение модели, чтобы она была более адекватной действительности, либо ее упрощение ради достижения практически приемлемого решения.

1.1.3    3. Классификация моделей

Классифицировать модели можно по разным критериям. Например, по характеру решаемых проблем модели могут быть разделены нафункциональные и структурные. В первом случае все величины, характеризующие явление или объект, выражаются количественно. При этом одни из них рассматриваются как независимые переменные, а другие — как функции от этих величин. Математическая модель обычно представляет собой систему уравнений разного типа (дифференциальных, алгебраических и т. д.), устанавливающих количественные зависимости между рассматриваемыми величинами. Во втором случае модель характеризует структуру сложного объекта, состоящего из отдельных частей, между которыми существуют определенные связи. Как правило, эти связи не поддаются количественному измерению. Для построения таких моделей удобно использовать теорию графов. Граф — это математический объект, представляющий собой некоторое множество точек (вершин) на плоскости или в пространстве, некоторые из которых соединены линиями (ребрами).

По характеру исходных данных и результатов предсказания модели могут быть разделены на детерминистические и вероятностно-статистические. Модели первого типа дают определенные, однозначные предсказания. Модели второго типа основаны на статистической информации, а предсказания, полученные с их помощью, имеют вероятностный характер.

 

 

МАТЕМАТИЧЕСКОЕ  МОДЕЛИРОВАНИЕ И ВСЕОБЩАЯ КОМПЬЮТЕРИЗАЦИЯ  ИЛИ ИМИТАЦИОННЫЕ МОДЕЛИ

Сейчас, когда в стране происходит чуть ли не всеобщая компьютеризация, от специалистов различных профессий приходится слышать высказывания: "Вот внедрим у себя ЭВМ, тогда все задачи сразу же будут решены". Эта точка зрения совершенно не верна, сами по себе ЭВМ без математических моделей тех или иных процессов ничего сделать не смогут и о всеобщей компьютеризации можно лишь мечтать.

В подтверждение вышесказанного попытаемся обосновать необходимость моделирования, в том числе математического, раскроем его преимущества в познании и преобразовании человеком внешнего мира, выявим существующие недостатки и пойдем… к имитационному моделированию, т.е. моделированию с использованием ЭВМ. Но все по порядку.

Прежде  всего, ответим на вопрос: что такое  модель?

Модель  – это материальный или мысленно представленный объект, который в  процессе познания (изучения) замещает оригинал, сохраняя некоторые важные для данного исследования типичные свойства.

Хорошо  построенная модель доступнее для  исследования – нежели реальный объект. Например, недопустимы эксперименты с экономикой страны в познавательных целях, здесь без модели не обойтись.

Резюмируя сказанное можно ответить на вопрос: для чего нужны модели? Для того, чтобы

  • понять, как устроен объект (его структура, свойства, законы развития, взаимодействия с окружающим миром).
  • научиться управлять объектом (процессом) и определять наилучшие стратегии
  • прогнозировать последствия воздействия на объект.

Что положительного в любой модели? Она  позволяет получить новые знания об объекте, но, к сожалению, в той  или иной степени не полна.

Модель сформулированная на языке математики с использованием математических методов называется математической моделью.

Исходным  пунктом ее построения обычно является некоторая задача, например экономическая. Широко распространены, как дескриптивные, так и оптимизационные математические, характеризующие различные экономические процессы и явления, например:

  • распределение ресурсов
  • рациональный раскрой
  • транспортные перевозки
  • укрупнение предприятий
  • сетевое планирование.

Каким образом происходит построение математической модели?

  • Во–первых, формулируется цель и предмет исследования.
  • Во–вторых, выделяются наиболее важные характеристики, соответствующие данной цели.
  • В–третьих, словесно описываются взаимосвязи между элементами модели.
  • Далее взаимосвязь формализуется.
  • И производится расчет по математической модели и анализ полученного решения.

Информация о работе Моделирование как метод научного познания