Автор работы: Пользователь скрыл имя, 06 Декабря 2014 в 19:12, курсовая работа
Первая часть посвящена рассмотрению основных принципов математического моделирования в экономике на микроэкономическом уровне и реализации этих принципов на примере классической оптимизационной модели, используемой в экономике железнодорожного транспорта - транспортной задаче. В последующих выпусках учебного пособия по экономико-математическому моделированию предполагается продолжить рассмотрение оптимизационных и равновесных моделей микроэкономических процессов, отразить основные проблемы эконометрики, а также дать рекомендации по выбору современных программных продуктов, необходимых для решения задач планирования, проектирования и прогнозирования экономических процессов на железнодорожном транспорте.
МИНИСТЕРСТВО ПУТЕЙ СООБЩЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ
Московский государственный университет путей сообщения (МГУ ПС)
(МИИТ)
Кафедра: «_____________________________
КУРСОВАЯ работа
«_____________________________
Выполнила: ст-ка гр-пы № ВЭТ-311
Приняла:
г. Москва
2003 г.
Важной проблемой управления предприятиями в сложных условиях рынка являются своевременное принятие правильных решений в связи с изменениями в экономической ситуации. Одним из путей решения этой проблемы является применение методов экономико-математического моделирования в управлении предприятиями, в том числе и железнодорожным транспортом.
Математические модели и методы, являющиеся необходимым элементом современной экономической науки, как на микро-, так и макроуровне, изучаются а таких её разделах, как математическая экономика и эконометрика.
Эконометрика - это раздел экономической науки, который изучает количественные закономерности в экономике при помощи корреляционно-регрессионного анализа и широко применяется при планировании и прогнозировании экономических процессов в условиях рынка.
Математическая экономика занимается разработкой, анализом и поиском решений математических моделей экономических процессов, среди которых выделяют макро- и микроэкономические классы моделей.
Макроэкономические модели изучают экономику в целом, опираясь на такие укрупнённые показатели, как валовый национальный продукт, потребление, инвестиции, занятость и т.д. При моделировании рыночной экономики особое место в этом классе занимают модели равновесия и экономического роста.
Равновесные модели описывают такие состояния экономики, когда результирующая всех сил, стремящихся вывести её из некоторого состояния, равна нулю (модель «затраты – выпуск» В. Леонтьева, модель Эрроу-Добре).
Модели экономического роста описывают экономическую динамику и приводят к поиску и анализу траекторий стационарного роста: (модель Харрода-Домара, модель Солоу, модели магистрального типа).
Микроэкономические модели описывают экономические процессы на уровне предприятий и фирм, помогая решать стратегические и оперативные вопросы планирования и оптимального управления в рыночных условиях. Важное место среди микроэкономических моделей занимают оптимизационные модели (задачи распределения ресурсов и финансирования, транспортная задача, максимизация прибыли фирмы, оптимальное проектирование).
Первая часть посвящена рассмотрению основных принципов математического моделирования в экономике на микроэкономическом уровне и реализации этих принципов на примере классической оптимизационной модели, используемой в экономике железнодорожного транспорта - транспортной задаче. В последующих выпусках учебного пособия по экономико-математическому моделированию предполагается продолжить рассмотрение оптимизационных и равновесных моделей микроэкономических процессов, отразить основные проблемы эконометрики, а также дать рекомендации по выбору современных программных продуктов, необходимых для решения задач планирования, проектирования и прогнозирования экономических процессов на железнодорожном транспорте.
ПРИНЦИПЫ ЭКОНОМИКО-МАТЕМАТИЧЕСКОГО МОДЕЛИРОВАНИЯ
Моделирование в научных исследованиях стало применяться в глубокой древности, постепенно захватывая всё новые области научных знаний: техническое конструирование, строительство и архитектуру, астрономию, физику, химию, биологию и, наконец, общественные науки. Большие успехи и признание практически во всех отраслях современной науки принёс методу моделирования - ХХ век. Однако методология моделирования долгое время развивалась независимо отдельными науками. Отсутствовала единая система понятий, единая терминология. Лишь постепенно стала осознаваться роль моделирования как универсального метода научного познания.
Термин модель широко используется в различных сферах человеческой деятельности и имеет множество смысловых значений. Рассмотрим только такие модели, которые являются инструментами получения знаний.
Модель - это материальный или мысленно представляемый объект, который в процессе исследования замещает объект - оригинал, так, что его непосредственное изучение даёт новые знания об объекте - оригинале.
Под моделированием понимается процесс построения, изучения и применения моделей. Оно тесно связано с такими категориями, как абстракция, аналогия, гипотеза и др. Процесс моделирования обязательно включает и построение абстракций, и умозаключения по аналогии, и конструирование научных гипотез.
Главная особенность моделирования в том, что это метод опосредованного познания с помощью объектов - заместителей. Модель выступает как своеобразный инструмент познания, который исследователь ставит между собой и объектом и с помощью которого изучает интересующий его объект. Именно эта особенность метода моделирования определяет специфические формы использования абстракций, аналогий, гипотез, других категорий и методов познания.
Необходимость использования метода моделирования определяется тем, что многие объекты (или проблемы, относящиеся к этим объектам) непосредственно исследовать или вовсе невозможно, или же это исследование требует много времени и средств.
Метод моделирования включает три элемента:
1. субъект (исследователь);
2. объект исследования;
3 модель, опосредствующую отношения познающего субъекта и познаваемого объекта,
Пусть имеется или необходимо создать некоторый объект А Мы конструируем (материально или мысленно) или находим в реальном мире другой объект В- модель объекта А. Рассмотрим основные этапы моделирования (рисунок 1.1.).
Этап построения модели предполагает наличие некоторых знаний об объекте- оригинале. Познавательные возможности модели обусловливаются тем, что модель отражает какие- либо существенные черты объекта – оригинала. Вопрос о необходимой и достаточной мере сходства оригинала и модели требует конкретного анализа. Очевидно, модель утрачивает свой смысл как в случае тождества с оригиналом (тогда он перестаёт быть оригиналом), так и в случае чрезмерного во всех существенных отношениях отличия от оригинала.
Таким образом, изучение одних сторон моделируемого объекта осуществляется ценой отказа от отражения других сторон. Поэтому любая модель замещает оригинал лишь в строго ограниченном смысле. Из этого следует, что для одного объекта может быть построено несколько “специализированных” моделей концентрирующих внимание на определённых сторонах исследуемого объекта или же характеризующих объект с разной степенью детализации.
На втором этапе процесса моделирования модель выступает как самостоятельный объект исследования. Одной из форм такого исследования является проведение “модельных” экспериментов, при которых сознательно изменяются условия функционирования модели и систематизируются данные об ее «поведении». Конечным результатом этого этапа является множество знаний о модели R
Этапы моделирования |
||||
1 |
Построение модели |
|||
2 |
Исследование свойств модели |
|||
3 |
Перенос знаний с модели на объект-оригинал |
|||
4 |
Практическая проверка полученных с помощью модели знаний |
Рисунок 1.1. Этапы моделирования
На третьем этапе осуществляется перенос знаний с модели на оригинал формирование множества знаний S об объекте. Этот процесс переноса знаний проводится по определённым правилам. Знания о модели должны быть скорректированы с учётом тех свойств объекта - оригинала, которые не нашли отражения или были изменены при построении модели. Мы можем с достаточным основанием переносить какой-либо результат с модели на оригинал, если этот результат необходимо связан с признаками сходства оригинала и модели. Если же определённый результат модельного - исследования связан с отличием модели от оригинала, то этот результат переносить неправомерно.
Четвёртый этап - практическая проверка полученных с помощью моделей знаний и их использование для построения обобщающей теории объекта, его преобразования или управления им.
Для понимания сущности моделирования важно не упускать из виду, что моделирование - не единственный источник званий об объекте. Процесс моделирования “погружён” в более общий процесс познания. Это обстоятельство учитывается не только на этапе построения модели, но и на завершающей стадии, когда происходит объединение и обобщение результатов исследования, получаемых на основе многообразных средств познания.
Моделирование - циклический процесс. Это означает, что за первым четырёхэтапным циклом может последовать второй, третий и т. д. При этом знания об исследуемом объекте расширяются и уточняются, а исходная модель постепенно совершенствуется. Недостатки, обнаруженные после первого цикла моделирования, обусловленною малым знанием объекта и ошибками в построении модели, можно исправить в последующих циклах В методологии моделирования, таким образом. заложены большие возможности саморазвития.
Проникновение математики в Экономическую науку связано с преодолением значительных трудностей, лежащих в природе экономических процессов и специфике экономической науки.
Большинство объектов, изучаемых экономической наукой, может быть охарактеризовано кибернетическим понятием - “сложная система”.
Наиболее распространено понимание системы как совокупности элементов, находящихся во взаимодействии и образующих некоторую целостность, единство. Важным качеством любой системы является эмерджентность - наличие таких свойств, которые не присущи ни одному из элементов, входящих в систему. Поэтому при изучении систем недостаточно пользоваться методом их расчленения на элементы с последующим изучением этих элементов в отдельности. Одна из трудностей экономических исследований - в том, что почти не существует экономических объектов, которые можно было бы рассматривать как отдельные (внесистемные) элементы.
Сложность системы определяется количеством входящих в неё элементов, связями между этими элементами, а также взаимоотношениями между системой и средой. Экономика страны обладает всеми признаками очень сложной системы. Она объединяет огромное число элементов, отличается многообразием внутренних связей и связей с другими системами (природная среда, экономика других стран и т. д.). В управлении экономикой взаимодействуют природные, технологические, социальные процессы, объективные и субъективные факторы.
Сложность экономики иногда рассматривалась как обоснование невозможности её моделирования, изучения средствами математики. Но такая точка зрения в принципе неверна. Моделировать можно объект любой природы и. любой сложности, И как раз сложные объекты представляют наибольший интерес для моделирования; именно здесь моделирование может дать результаты, которые нельзя получить другими способами исследования.
Потенциальная возможность математического моделирования любых экономических объектов и процессов не означает, разумеется, её успешной осуществимости при данном уровне экономических и математических знаний, имеющейся конкретной информации и вычислительной технике. И, хотя нельзя указать абсолютные границы математической формализуемости экономических проблем, всегда будут существовать неформализованные ещё проблемы, для которых математическое моделирование недостаточно эффективно.
С экономической точки зрения оптимальные решения, полученные с помощью экономическо-математического моделирования, обладают следующими основными свойствами (рисунок 1.2.)
Свойства оптимального решения |
|||||
1. Зависимость от поставленной цели |
|||||
2. Зависимость от текущей хозяйственной обстановки |
|||||
3. Устойчивость базиса |
|||||
4. Взаимозависимость решений по всем объектам экономики |
|||||
5. Зависимость от уровня управлен |
|||||
Информация о работе Экономико-математическое моделирование как метод научного познания