Экологические характеристики гетерогенных катализаторов

Автор работы: Пользователь скрыл имя, 12 Сентября 2011 в 20:02, курсовая работа

Описание работы

На сегодняшний день каталитические процессы составляют основную массу деструктивных процессов переработки нефти. Их популярность, помимо многих других факторов, обусловлена снижением экологической нагрузки при проведении каталитических процессов переработки углеводородных систем по сравнению с термическими процессами.

Файлы: 1 файл

глава 1Литобзор.doc

— 356.00 Кб (Скачать файл)

     Последнее подтверждается невозможностью регенерации основной массы целых, не имеющих повреждений поверхности «черных» шариков даже при 750 °С в среде кислорода в течение 20 часов. В то же время центральная часть пластинок, изготовленных из таких шариков, обычно освобождалась от кокса уже при 700 °С в воздухе за 10-60 мин. Следовательно, «черные», нерегенерируемые частицы окружены плотной спекшейся коркой, закрывающей доступ кислорода внутрь.

     Была  предпринята попытка охарактеризовать пористую структуру отдельных зон катализатора [23]. Внутренние зоны катализатора, освобождающиеся от кокса в разное время, отличаются оптическими свойствами. На рисунках. 1.2 и 1.3 приведены фотографии пластинок из «серых» и «черных» частиц в проходящем свете в разные моменты регенерации. На фотографиях, выполненных в обычном свете, можно различить границы некоторых зон катализатора. Отчетливы они у пластинок из «черных» частиц. Особенно четко границы видны на фотографиях, сделанных в поляризованном свете. Если на пути поляризованного луча нет кристаллического вещества, на фотографиях изменений нет. Если же на пути луча имеется кристалл, то вследствие двойного лучепреломления соответствующие участки катализатора на фотографиях выглядят светлыми. По интенсивности посветления можно приближенно судить о концентрации кристаллического вещества. Из рисунка 1.3 видно, что в «белых» частицах кристаллическая фаза отсутствует. Более сильное посветление наблюдается в отдельных зонах регенерированных «серых» пластинок. Регенерированная часть «черных» пластинок также содержит несколько зон с кристаллической фазой, концентрация которой обычно больше, чем у зон «серых» пластинок. От центра к периферии интенсивность посветления зон обычно увеличивается вплоть до границ остаточного кокса у «серых» частиц или до нерегенерируемой спекшейся корки у «черных» частиц. Имеются и такие частицы, у которых светлые и темные области чередуются. Ядра играют незначительную роль в процессе каталитического крекинга. В то же время результаты анализа ядер после регенерации свидетельствуют о том, что, обладая довольно большой удельной поверхностью, в два с лишним раза превышающей удельную поверхность периферийных слоев катализатора, они могли бы эффективно участвовать в процессе.

     Таким образом, в промышленных условиях катализатор  может спекаться по глубине шарика неравномерно, поэтому структура по диаметру частицы неоднородна. Эта неоднородность увеличивается при переходе от «белых» к «серым» и от «серых» к «черным» шарикам. 

     

     

     Рисунок 1.2 - Пластинки, приготовленные из «черных» шариков: 1-6-в обычном свете; 3а, 6а-в поляризованном свете

     

     

     Известны  случаи быстрого (в течение нескольких часов) спекания аморфного алюмосиликатного катализатора на установках крекинга с псевдоожиженным слоем. Современные марки цеолитсодержащих катализаторов эксплуатируют длительное время при температурах до 760°С без существенного снижения их каталитических свойств.

               

     

     

     

     

     

 
     

     

     

     

                                         

     

     

     

     

     Рисунок 1.3 - Пластинки, приготовленные из «серых» и «белых» шариков: 1,3 - исходные «серые» пластинки; 2, 4 - то же, в конце регенерации; 2а, 4 - то же, в поляризованном свете; 5-7- «белые» пластинки в поляризованном свете

     Катализаторы  других процессов менее термостабильны. Установлено, что действие температур на уменьшение поверхности алюмохромовых катализаторов начинает сильно сказываться выше 640-650 °С [16]. Для нанесенных катализаторов при окислительной регенерации может наблюдаться уменьшение дисперсности активного компонента. Основной причиной изменения дисперсности активного компонента в нанесенных катализаторах, как и в случае других пористых катализаторов, является удаленность системы от состояния равновесия [21]. После периода разработки дисперсная структура катализатора находится в некотором стационарном состоянии, когда дисперсность в данных температурных условиях не изменяется. Однако в процессе окислительной регенерации перегревы и действие паров воды ускоряют рост частиц. Например, под действием высоких температур происходит укрупнение частиц платины на поверхности носителя.

     При нагревании до 500 °С наблюдается рост частиц платины и соответствующее уменьшение поверхности платины и степени превращения в реакции гидрирования бензола. При нагревании до 600-800 °С платиновый катализатор практически полностью теряет активность.

      Природа носителя также оказывает непосредственное влияние на стабильность структуры катализаторов в процессе их регенерации. Так, в [21] показано, что стабильность структуры катализаторов при нагревании зависит не только от физических свойств активного материала, но и от природы носителя. Вследствие разной поверхностной подвижности атомов на различных поверхностях природа носителя влияет и на размеры, и на форму дискретных частиц активного компонента, образующихся при нагревании контактов. Кристаллизация одного и того же вещества на разных носителях приводит к формированию структур, различающихся как внешней формой кристаллов, так и их размерами.

     Влияние природы носителя на поверхностную  миграцию активного компонента было отмечено и в других работах. При исследовании термостабильности никеля в различных катализаторах (никельхромовом, никельалюминиевом, никельхромалюминиевом) установлено [16], что скорость миграции никеля по поверхности зависит и от температуры, и от прочности связи частиц никеля с поверхностью. Эта величина, как полагают авторы, зависит от прочности связи никеля с носителем. Наблюдаемое с ростом прочности связи увеличение термостойкости поверхности никеля указывает на снижение скорости диффузии по поверхности.

     Таким образом, изменения структурных  характеристик или размеров нанесенного на носитель активного компонента проявляются у всех катализаторов. Спекание может протекать по разным механизмам и в зависимости от условий регенерации и свойств катализатора может вызывать кристаллизацию вещества катализатора. В связи с этим при изучении спекания катализатора в конкретном процессе необходимо прежде всего выяснить, какой из возможных механизмов играет большую роль, что позволит наметить пути повышения стабильности катализатора.

     1.7 Способы увеличения стабильности цеолитных катализаторов

     Актуальной  в современных процессах нефтепереработки является проблема придания стабильности цеолитсодержащему катализатору, что позволит увеличить сроки его межрегенерационного пробега и тем самым уменьшить капиталозатраты в производство. С этой целью прибегают к различным методам модификации цеолитов. Так авторы [24,25] утверждают, что стабильность каталитического действия цеолитов зависит от числа атомов алюминия в катионных позициях. Методами ЯМР, 27AL, ИКС, РФЭС ими исследованы серии цеолитов типа Y и ZSM, подвергнутые деалюминированию парами SiCl4. Показано, что термохимическая обработка цеолитов Y и ZSM парами SiCl4 приводит к удалению в первую очередь атомов Al кремнекислородного каркаса цеолита. Активные центры, в состав которых входят атомы алюминия катионных позиций, в значительной степени ведут реакции перераспределения водорода в промежуточных ненасыщенных углеводородах. С ростом содержания атомов алюминия в катионных позициях стабильность уменьшается. Неравномерность распределения атомов алюминия по кристаллоцеолитам повышает вероятность образования фрагментов типа: [(SiO4)4- n Si(OAl)n]n-Al3+ или [(SiO4)4- n Si(OAl)n]n-Al3+ (OH-…H+), которые могут являться центрами многоточечного взаимодействия с молекулами реагентов.

     В работе [26] выявлена зависимость направления протекания превращений н-бутана от температуры на цинкмодифицированном цеолите типа ЦВМ. Установлено, что пропиленсодержащую фракцию процесса дегидрирования бутана можно переработать по двум направлениям:

  • получение высокооктановых компонентов моторных топлив с низким содержанием ароматических углеводородов. Процесс рекомендуется вести при 300-330 0С, объемной скорости 300-720ч-1, продолжительность до 30ч.
  • получение концентрата ароматических углеводородов, который может быть использован в качестве высокооктановой добавки к моторным топливам, либо как сырье для нефтехимии. Процесс рекомендуется проводить при 500-530 0С, объемной скорости 300-720ч-1, продолжительности до 20 часов.

     Имеются также варианты повышения активности цеолитных катализаторов на стадии их синтеза [27]. Способ получения микросферического цеолитсодержащего катализатора для крекинга нефтяных фракций включает осаждение из водных растворов алюмината натрия и сернокислого алюминия аморфной гидроокиси алюминия, смещения водной суспензии гидроокиси алюминия в количестве 5-40% с алюмосиликатной суспензией и цеолитом с последующей распылительной сушкой. Повысить срок службы катализатора можно введением в состав цеолита железа [28]. Срок службы декатионированного цеолита в этом случае увеличивается с 85 до 570 ч для образца с содержанием железа 2,26%. Дальнейшее повышение концентрации железа в цеолите снижает срок службы катализатора.

     Зависимость кислотных свойств цеолита от концентрации вводимого железа обуславливает и изменение его каталитических свойств. Введение железа на стадии гидротермального синтеза значительно повышает селективность катализатора по отношению к олефинам С24. Это объясняется снижением активности Fe-содержащих катализаторов во вторичных реакциях, к числу которых относится, например, реакция перераспределения водорода. Обнаружено промотирующее влияние железа (III) при нанесении его на декатионированный и деалюминированный высококремнистый цеолит типа пентасил в реакциях изомеризации дихлорбензолов и их алкилирования этиленом [28].

     В процессе циклоформинга бензинового  сырья в [29] использовали цинк-модифицированный цеолитсодержащий катализатор, в котором варьировали содержание цинка от 0 до 10 %. Полученные результаты согласуются со схемой образования АРУ из низкомолекулярных олефиновых продуктов крекинга, предложенной в [30] для СВК-цеолитов. Модифицирование катализаторов цинком способствует превращению продуктов крекинга в ароматические компоненты, как и при введении галлия в цеолиты типа ZSM [31], и протеканию реакций дегидрирования углеводородов, на что указывает непрерывное возрастание выхода водорода.

     Наличие в составе катализатора металла  - катализатора окислительно-восстановительных реакций - позволяет значительно снизить содержание кокса в регенерированном катализаторе - до 0,1% и менее, так как скорость горения остаточного кокса возрастает в этом случае на порядок и более [32].

     В качестве металлов-промоторов, интенсифицирующих  регенерацию закоксованного катализатора, применяют чаще всего платину, нанесенную в малых концентрациях (< 0,1 % масс.) либо непосредственно на цеолитсодержащий катализатор, или на окись алюминия с использованием как самостоятельной добавки к каталитической композиции [34]. Это позволяет значительно повысить полноту и скорость сгорания кокса катализатора и существенно понизить содержание монооксида углерода в газах регенерации, тем самым предотвратить неконтролируемое загорание СО над слоем катализатора в регенераторе, приводящее к прогару циклонов, котлов-утилизаторов и другого оборудования. Из отечественных промоторов окисления можно отметить КО-4, КО -9, Оксипром-1 и Оксипром-2.

     Помимо  непосредственного модифицирования  состава катализатора используют и другие методы, позволяющие повысить срок активной работы контакта. Для снижения дезактивирующего влияния примесей сырья на цеолитсодержащий катализатор также весьма эффективно применяют технологию каталитического крекинга с подачей в сырье специальных пассиваторов металлов [34]. Последние представляют собой металлоорганические комплексы сурьмы, висмута, фосфора или олова. Сущность эффекта пассивации заключается в переводе металлов, осадившихся на катализаторе, в пассивное состояние, например, в результате образования соединения типа шпинели. Пассивирующий агент вводят в сырье в виде водо- или маслорастворимой добавки. Подача пассиваторов резко снижает выход кокса и водорода, увеличивает выход бензина и производительность установки. В настоящее время пассиваторы применяют на 80 % установок каталитического крекинга остатков в США и около 50 % установок в Западной Европе.

     В последние годы внедряется ЦСК с твердой добавкой - ловушкой ванадия и никеля, содержащей оксиды Са, Mg, титанат бария и др., адсорбирующие в 6-10 раз больше металлов, чем сам катализатор.

     Ну  и, наконец, технологические параметры  проведения процесса также оказывают  непосредственное влияние на коксообразование и, следовательно, на время стабильной работы катализатора. Поэтому смягчение технологических режимов процессов приведет к повышению срока службы катализатора.

Информация о работе Экологические характеристики гетерогенных катализаторов