Автор работы: Пользователь скрыл имя, 12 Сентября 2011 в 20:02, курсовая работа
На сегодняшний день каталитические процессы составляют основную массу деструктивных процессов переработки нефти. Их популярность, помимо многих других факторов, обусловлена снижением экологической нагрузки при проведении каталитических процессов переработки углеводородных систем по сравнению с термическими процессами.
Последнее подтверждается невозможностью регенерации основной массы целых, не имеющих повреждений поверхности «черных» шариков даже при 750 °С в среде кислорода в течение 20 часов. В то же время центральная часть пластинок, изготовленных из таких шариков, обычно освобождалась от кокса уже при 700 °С в воздухе за 10-60 мин. Следовательно, «черные», нерегенерируемые частицы окружены плотной спекшейся коркой, закрывающей доступ кислорода внутрь.
Была
предпринята попытка
Таким
образом, в промышленных условиях катализатор
может спекаться по глубине шарика
неравномерно, поэтому структура по диаметру
частицы неоднородна. Эта неоднородность
увеличивается при переходе от «белых»
к «серым» и от «серых» к «черным» шарикам.
Рисунок 1.2 - Пластинки, приготовленные из «черных» шариков: 1-6-в обычном свете; 3а, 6а-в поляризованном свете
Известны случаи быстрого (в течение нескольких часов) спекания аморфного алюмосиликатного катализатора на установках крекинга с псевдоожиженным слоем. Современные марки цеолитсодержащих катализаторов эксплуатируют длительное время при температурах до 760°С без существенного снижения их каталитических свойств.
Рисунок 1.3 - Пластинки, приготовленные из «серых» и «белых» шариков: 1,3 - исходные «серые» пластинки; 2, 4 - то же, в конце регенерации; 2а, 4 - то же, в поляризованном свете; 5-7- «белые» пластинки в поляризованном свете
Катализаторы
других процессов менее
При нагревании до 500 °С наблюдается рост частиц платины и соответствующее уменьшение поверхности платины и степени превращения в реакции гидрирования бензола. При нагревании до 600-800 °С платиновый катализатор практически полностью теряет активность.
Природа носителя также оказывает непосредственное влияние на стабильность структуры катализаторов в процессе их регенерации. Так, в [21] показано, что стабильность структуры катализаторов при нагревании зависит не только от физических свойств активного материала, но и от природы носителя. Вследствие разной поверхностной подвижности атомов на различных поверхностях природа носителя влияет и на размеры, и на форму дискретных частиц активного компонента, образующихся при нагревании контактов. Кристаллизация одного и того же вещества на разных носителях приводит к формированию структур, различающихся как внешней формой кристаллов, так и их размерами.
Влияние природы носителя на поверхностную миграцию активного компонента было отмечено и в других работах. При исследовании термостабильности никеля в различных катализаторах (никельхромовом, никельалюминиевом, никельхромалюминиевом) установлено [16], что скорость миграции никеля по поверхности зависит и от температуры, и от прочности связи частиц никеля с поверхностью. Эта величина, как полагают авторы, зависит от прочности связи никеля с носителем. Наблюдаемое с ростом прочности связи увеличение термостойкости поверхности никеля указывает на снижение скорости диффузии по поверхности.
Таким образом, изменения структурных характеристик или размеров нанесенного на носитель активного компонента проявляются у всех катализаторов. Спекание может протекать по разным механизмам и в зависимости от условий регенерации и свойств катализатора может вызывать кристаллизацию вещества катализатора. В связи с этим при изучении спекания катализатора в конкретном процессе необходимо прежде всего выяснить, какой из возможных механизмов играет большую роль, что позволит наметить пути повышения стабильности катализатора.
1.7 Способы увеличения стабильности цеолитных катализаторов
Актуальной
в современных процессах
В работе [26] выявлена зависимость направления протекания превращений н-бутана от температуры на цинкмодифицированном цеолите типа ЦВМ. Установлено, что пропиленсодержащую фракцию процесса дегидрирования бутана можно переработать по двум направлениям:
Имеются также варианты повышения активности цеолитных катализаторов на стадии их синтеза [27]. Способ получения микросферического цеолитсодержащего катализатора для крекинга нефтяных фракций включает осаждение из водных растворов алюмината натрия и сернокислого алюминия аморфной гидроокиси алюминия, смещения водной суспензии гидроокиси алюминия в количестве 5-40% с алюмосиликатной суспензией и цеолитом с последующей распылительной сушкой. Повысить срок службы катализатора можно введением в состав цеолита железа [28]. Срок службы декатионированного цеолита в этом случае увеличивается с 85 до 570 ч для образца с содержанием железа 2,26%. Дальнейшее повышение концентрации железа в цеолите снижает срок службы катализатора.
Зависимость кислотных свойств цеолита от концентрации вводимого железа обуславливает и изменение его каталитических свойств. Введение железа на стадии гидротермального синтеза значительно повышает селективность катализатора по отношению к олефинам С2-С4. Это объясняется снижением активности Fe-содержащих катализаторов во вторичных реакциях, к числу которых относится, например, реакция перераспределения водорода. Обнаружено промотирующее влияние железа (III) при нанесении его на декатионированный и деалюминированный высококремнистый цеолит типа пентасил в реакциях изомеризации дихлорбензолов и их алкилирования этиленом [28].
В процессе циклоформинга бензинового сырья в [29] использовали цинк-модифицированный цеолитсодержащий катализатор, в котором варьировали содержание цинка от 0 до 10 %. Полученные результаты согласуются со схемой образования АРУ из низкомолекулярных олефиновых продуктов крекинга, предложенной в [30] для СВК-цеолитов. Модифицирование катализаторов цинком способствует превращению продуктов крекинга в ароматические компоненты, как и при введении галлия в цеолиты типа ZSM [31], и протеканию реакций дегидрирования углеводородов, на что указывает непрерывное возрастание выхода водорода.
Наличие в составе катализатора металла - катализатора окислительно-восстановительных реакций - позволяет значительно снизить содержание кокса в регенерированном катализаторе - до 0,1% и менее, так как скорость горения остаточного кокса возрастает в этом случае на порядок и более [32].
В качестве металлов-промоторов, интенсифицирующих регенерацию закоксованного катализатора, применяют чаще всего платину, нанесенную в малых концентрациях (< 0,1 % масс.) либо непосредственно на цеолитсодержащий катализатор, или на окись алюминия с использованием как самостоятельной добавки к каталитической композиции [34]. Это позволяет значительно повысить полноту и скорость сгорания кокса катализатора и существенно понизить содержание монооксида углерода в газах регенерации, тем самым предотвратить неконтролируемое загорание СО над слоем катализатора в регенераторе, приводящее к прогару циклонов, котлов-утилизаторов и другого оборудования. Из отечественных промоторов окисления можно отметить КО-4, КО -9, Оксипром-1 и Оксипром-2.
Помимо
непосредственного
В последние годы внедряется ЦСК с твердой добавкой - ловушкой ванадия и никеля, содержащей оксиды Са, Mg, титанат бария и др., адсорбирующие в 6-10 раз больше металлов, чем сам катализатор.
Ну и, наконец, технологические параметры проведения процесса также оказывают непосредственное влияние на коксообразование и, следовательно, на время стабильной работы катализатора. Поэтому смягчение технологических режимов процессов приведет к повышению срока службы катализатора.
Информация о работе Экологические характеристики гетерогенных катализаторов