Автор работы: Пользователь скрыл имя, 12 Декабря 2011 в 12:13, курсовая работа
Цель моей курсовой работы - изучение инвестиций и статистических методов, применяющихся для их изучения.
Задачами курсовой работы являются:
- рассмотреть значение инвестиций в статистике, дать определение понятию «инвестиции»;
- изучить классификацию инвестиций;
- рассмотреть важнейшие направления анализа инвестиций;
- раскрыть основные статистические методы оценки инвестиций.
ВВЕДЕНИЕ 3
I. ТЕОРЕТИЧЕСКАЯ ЧАСТЬ 4
1. Экономическая сущность инвестиций и задачи статистического изучения 4
2. Источники статистической информации 8
3. Группировка инвестиций 9
4. Важнейшие направления анализа инвестиций 13
5. Статистические методы, используемые при анализе инвестиций 16
1. Метод группировок. 17
3. Метод корреляционно-регрессионного анализа. 19
4. Индексный метод. 19
II. РАСЧЕТНАЯ ЧАСТЬ 21
РЕШЕНИЕ 23
ЗАДАНИЕ 1 23
1. Построение статистический ряда распределения предприятий по признаку - объему нераспределенной прибыли, образовав 4 группы с равными интервалами 23
2. Рассчитайте характеристики интервального ряда распределения: среднюю арифметическую, среднее квадратическое отклонение, коэффициент вариации, моду и медиану. 27
ЗАДАНИЕ 2 34
1. Установление наличия и характера корреляционной связи между признаками Нераспределенная прибыль и Инвестиции в основные фонды методами аналитической группировки и корреляционных таблиц 34
2. Измерение тесноты корреляционной связи с использованием коэффициента детерминации и эмпирического корреляционного отношения 36
ЗАДАНИЕ 3 43
1. Определение ошибки выборки среднего размера нераспределенной прибыли и границы, в которых будет находиться средний размер нераспределенной прибыли генеральной совокупности. 44
2. Определение ошибки выборки для доли предприятий с инвестициями в основной капитал 5,0 млн.руб. и более, а также границы, в которых будет находиться генеральная доля 46
ЗАДАНИЕ 4 48
III. АНАЛИТИЧЕСКАЯ ЧАСТЬ 50
ЗАКЛЮЧЕНИЕ 60
СПИСОК ЛИТЕРАТУРЫ 61
Расчет общей дисперсии по формуле (10):
Общая дисперсия может быть также рассчитана по формуле
,
где – средняя из квадратов значений результативного признака,
– квадрат средней величины
значений результативного признака.
Тогда
Межгрупповая дисперсия измеряет систематическую вариацию результативного признака, обусловленную влиянием признака-фактора Х (по которому произведена группировка) и вычисляется по формуле
, (13)
где –групповые средние,
– общая средняя,
–число единиц в j-ой группе,
k
– число групп.
Для расчета межгрупповой дисперсии строится вспомогательная таблица 13 При этом используются групповые средние значения из табл. 9 (графа 5).
= 0,607 млн. руб.
Таблица 13
Вспомогательная таблица для расчета межгрупповой дисперсии
Группы
предприятий по объему нераспределенной
прибыли, млн.руб.
x |
Число предприятий,
fj |
Среднее значение
в группе, млн руб.
|
||
1 | 2 | 3 | 4 | 5 |
0,16-0,36 | 3 | 0,28 | -0,327 | 0,320787 |
0,36-0,56 | 4 | 0,52 | -0,087 | 0,030276 |
0,56-0,76 | 13 | 0,68 | 0,073 | 0,069277 |
0,76-0,96 | 5 | 0,78 | 0,173 | 0,149645 |
итого | 0,569985 |
Рассчитаем межгрупповую дисперсию:
Определяем коэффициент детерминации:
или 69,72%
Вывод. 69,72 % вариации объёма инвестиций в основные фонды предприятиями обусловлено вариацией нераспределенной прибыли, а 30,28% – влиянием прочих неучтенных факторов.
Эмпирическое корреляционное отношение оценивает тесноту связи между факторным и результативным признаками и вычисляется по формуле
, (14)
Значение показателя изменяются в пределах . Чем ближе значение к 1, тем теснее связь между признаками. Для качественной оценки тесноты связи на основе служит шкала Чэддока (табл. 14):
Таблица 14
Шкала Чэддока
h | 0,1 – 0,3 | 0,3 – 0,5 | 0,5 – 0,7 | 0,7 – 0,9 | 0,9 – 0,99 |
Характеристика
силы связи |
Слабая | Умеренная | Заметная | Тесная | Весьма тесная |
Расчет
эмпирического корреляционного
отношения
по
формуле (14):
Рассчитаем показатель :
Вывод:
Эмпирическое корреляционное отношение
равное 0,835 показывает, что согласно шкале
Чэддока между нераспределенной прибылью
и инвестициями в основные фонды наблюдается
тесная прямая взаимосвязь.
Показатели и рассчитаны для выборочной совокупности, т.е. на основе ограниченной информации об изучаемом явлении. Поскольку при формировании выборки на первичные данные могли иметь воздействии какие-либо случайные факторы, то есть основание полагать, что и полученные характеристики связи , несут в себе элемент случайности. Ввиду этого, необходимо проверить, насколько заключение о тесноте и силе связи, сделанное по выборке, будет правомерными и для генеральной совокупности, из которой была произведена выборка.
Проверка выборочных показателей на их неслучайность осуществляется в статистике с помощью тестов на статистическую значимость (существенность) показателя. Для проверки значимости коэффициента детерминации служит дисперсионный F-критерий Фишера, который рассчитывается по формуле
где n – число единиц выборочной совокупности,
m – количество групп,
– межгрупповая дисперсия,
– дисперсия j-ой группы (j=1,2,…,m),
– средняя арифметическая групповых дисперсий.
Величина рассчитывается, исходя из правила сложения дисперсий:
где – общая дисперсия.
Для проверки значимости показателя рассчитанное значение F-критерия Fрасч сравнивается с табличным Fтабл для принятого уровня значимости и параметров k1, k2, зависящих от величин n и m : k1=m-1, k2=n-m. Величина Fтабл для значений , k1, k2 определяется по таблице распределения Фишера, где приведены критические (предельно допустимые) величины F-критерия для различных комбинаций значений , k1, k2. Уровень значимости в социально-экономических исследованиях обычно принимается равным 0,05 (что соответствует доверительной вероятности Р=0,95).
Если Fрасч>Fтабл , коэффициент детерминации признается статистически значимым, т.е. практически невероятно, что найденная оценка обусловлена только стечением случайных обстоятельств. В силу этого, выводы о тесноте связи изучаемых признаков, сделанные на основе выборки, можно распространить на всю генеральную совокупность.
Если Fрасч<Fтабл, то показатель считается статистически незначимым и, следовательно, полученные оценки силы связи признаков относятся только к выборке, их нельзя распространить на генеральную совокупность.
Фрагмент
таблицы Фишера критических величин
F-критерия для значений
=0,05; k1=3,4,5; k2=24-35 представлен
ниже:
k2 | ||||||||||||
k1 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 |
3 | 3,01 | 2,99 | 2,98 | 2,96 | 2,95 | 2,93 | 2,92 | 2,91 | 2,90 | 2,89 | 2,88 | 2,87 |
4 | 2,78 | 2,76 | 2,74 | 2,73 | 2,71 | 2,70 | 2,69 | 2,68 | 2,67 | 2,66 | 2,65 | 2,64 |
5 | 2,62 | 2,60 | 2,59 | 2,57 | 2,56 | 2,55 | 2,53 | 2,52 | 2,51 | 2,50 | 2,49 | 2,48 |
Расчет дисперсионного F-критерия Фишера для оценки =69,72%, полученной при =0,0327, =0,0228:
Fрасч
Табличное значение F-критерия при = 0,05:
n | m | k1=m-1 | k2=n-m | Fтабл ( ,4, 26) |
30 | 4 | 3 | 26 | 2,98 |
Вывод: поскольку Fрасч>Fтабл, то величина коэффициента детерминации =75,1% признается значимой (неслучайной) с уровнем надежности 95% и, следовательно, найденные характеристики связи между признаками Нераспределенная прибыль и Инвестиции в лсновные фонды правомерны не только для выборки, но и для всей генеральной совокупности банков.
Выполнение Задания 3
По результатам выполнения задания 1 с вероятностью 0,683 определите:
1. Ошибку
выборки среднего размера
2. Ошибку
выборки доли предприятий с
инвестициями в основной
Применяя выборочный метод наблюдения, необходимо рассчитать ошибки выборки (ошибки репрезентативности), т.к. генеральные и выборочные характеристики, как правило, не совпадают, а отклоняются на некоторую величину ε.
Принято вычислять два вида ошибок выборки - среднюю и предельную .
Для расчета средней ошибки выборки применяются различные формулы в зависимости от вида и способа отбора единиц из генеральной совокупности в выборочную.
Для собственно-случайной и механической выборки с бесповторным способом отбора средняя ошибка для выборочной средней определяется по формуле
, (15)
где – общая дисперсия изучаемого признака,
N – число единиц в генеральной совокупности,
n – число единиц в выборочной совокупности.
Информация о работе Статистические методы изучения инвестиций